UBA-FuE-Vorhaben 109 03 377 Abschlußbericht Januar 1993

Schadstoffkartierung in Sedimenten des deutschen Wattenmeeres Juni 1989 - Juni 1992

C. Koopmann, J. Faller, K.-H. van Bernem, A. Prange, A. Müller


GKSS-Forschungszentrum Geesthacht GmbH

Im Auftrag

des Umweltbundesamts,

des Niedersächsischen Landesamts für Ökologie

und des Landesamts für Wasserhaushalt und Küsten Schleswig-Holstein

PROJEKTLEITUNG

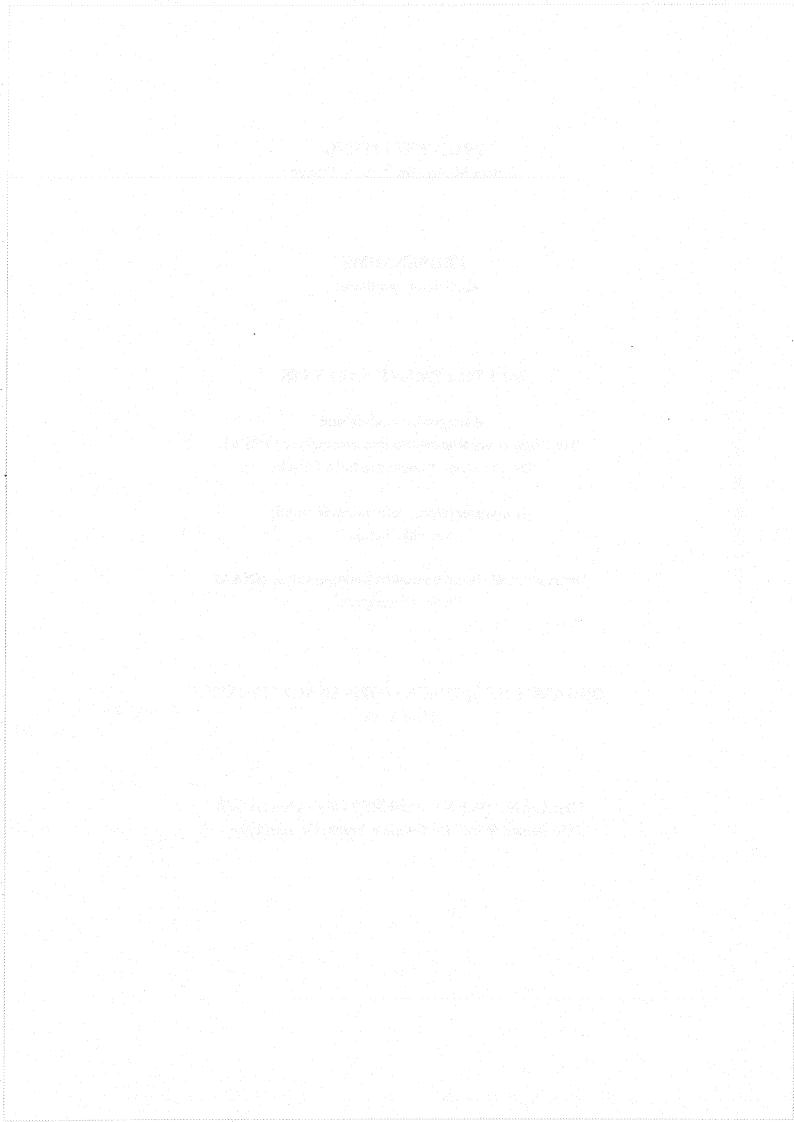
Agmar Müller, Dr. Andreas Prange

PROBENAHME

Karl-Heinz van Bernem

MULTIELEMENT-ANALYTIK

Korngrößenanalyse und
Totalreflexions-Röntgenfluoreszenzanalyse (TRFA)
Dr. Christiane Koopmann, Silke Diercks


Atomabsorptionsspektrometrie (AAS) Veronika Felsen

Instrumentelle Neutronenaktivierungsanalyse (INAA) Rainer Niedergesäß

ORGANISCHE KOHLENSTOFF-ANALYTIK (TOC) Hans Kock

CHLORKOHLENWASSERSTOFF-ANALYTIK

Dr. Renate Sturm, Dr. Gabriele Bruhn, Dr. Jörn Faller

Kurzfassung

Von Juni 1989 bis Juni 1992 wurde eine flächendeckende Kartierung der anorganischen und organischen Schadstoffe in den Sedimenten des gesamten deutschen Wattenmeeres durchgeführt.

Im Rahmen dieser Untersuchung wurden sowohl die Verteilungsmuster der Schadstoffe nach Art und Konzentration bestimmt als auch deren Belastungsschwerpunkte im Wattengebiet festgestellt. Dabei wurden die Vorgaben des nationalen (Bund/Länder-Meßprogramm) und des internationalen Überwachungsprogramms für die Nordsee (Joint Monitoring Programme) berücksichtigt.

Auf der Grundlage der Ergebnisse der Schadstoffkartierung sowie ersten Erkenntnissen aus einer zeitgleich aufgenommenen biologischen Kartierung wurde ein Konzeptvorschlag für ein Schadstoffmonitoring in den eulitoralen Sedimenten des deutschen Wattenmeeres ausgearbeitet.

Abstract

From June 1989 to June 1992 a mapping of inorganic and organic pollutants in the sediments from the entire German Wadden Sea has been carried out.

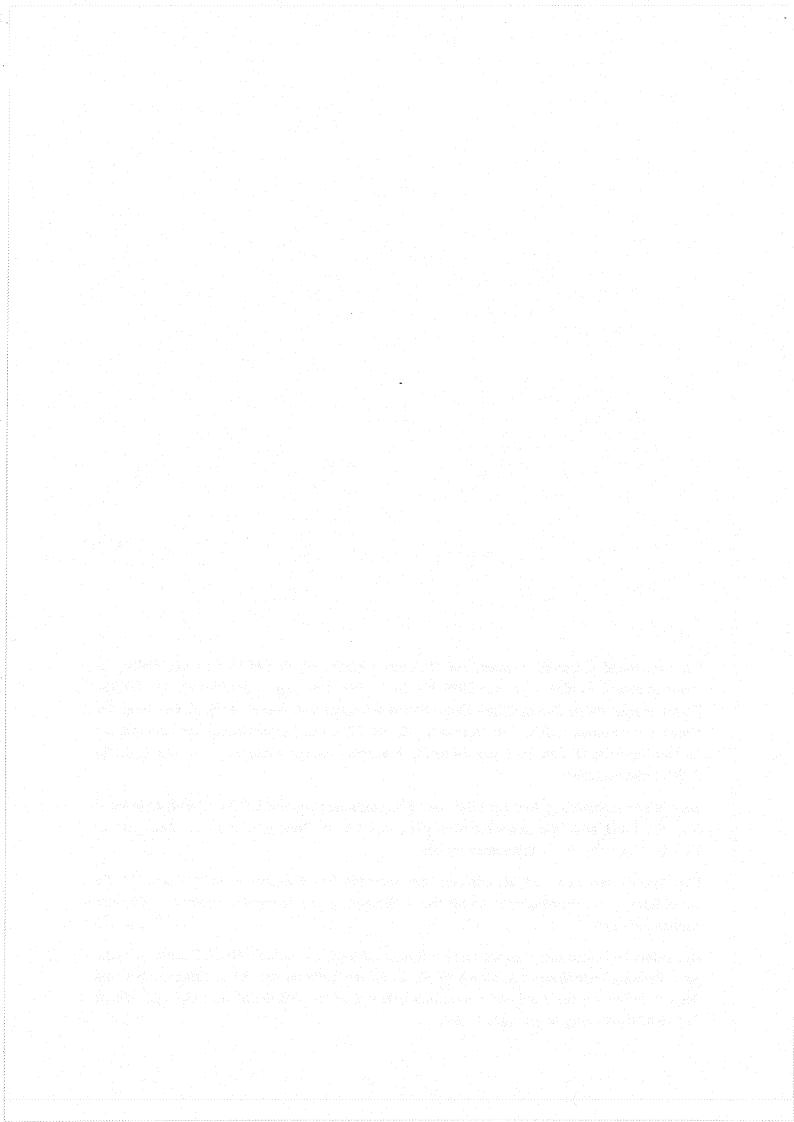
Following the guidelines of the national (Bund/Länder-Meßprogramm) and international monitoring programmes for the North Sea (Joint Monitoring Programme) distribution patterns of pollutants according to their type and concentration have been determined in the course of this investigation and the main pollution areas have been established.

Based on the results of the mapping of pollutants, as well as on the first findings of the biological mapping, a concept for the monitoring of pollutants in eulittoral sediments of the German Wadden Sea has been developed.

tanin mening dalipungan pala din bahasi dalah dalamin pendingan pendunan meninggal dalah dalah meninggal dalah Semanan kemanggan dalah dina meninggal dalah pendan men

eliten al Residentelli del tradicio depositament. Su filonome a debite e generalizazioni di medicio coccido e d La ellegia della della la compania della competato della completa della tradicioni della competita della della La englicia della competita della competato della competato della competato della della competato della compet La presidenta della competita della competato della competa

and properties the form the properties of the second of the properties of the second o


entrikaentrija. Petija kenjistan intriktionar ja Wikanii ji in autona jale din zelaantii in aleo grapar Peki Grapatitaks in kunga antro ji jaloon, kendrij agome perili etholisti saki sali in engala agome grapasa en Paki ke Mantin plotti tranja andra padraksi, maa ibi oo ibay tiinka ka katijayaanga kengalaksin tranjaksi on t Telik ji ji ji jala jalatikan andra opate kantin endah hat piblik padraksi, pagabangi kena antrik pensa e

Die vorliegenden Untersuchungen zur "Schadstoffkartierung in Sedimenten des deutschen Wattenmeeres" wurden von Juni 1989 bis Juni 1992 unter der Federführung des GKSS-Forschungszentrums durchgeführt. Diese Schadstoffkartierung wurde durch Zuwendung des Umweltbundesamts (UBA, FuE-Vorhaben 109 03 377), des Niedersächsischen Landesamts für Ökologie (NLÖ) und des Landesamts für Wasserhaushalt und Küsten Schleswig-Holstein (LWK) mitfinanziert.

Dem Niedersächsischen Amt für Insel- und Küstenschutz und dem Schleswig-Holsteinischen Amt für Land und Wasserwirtschaft danken wir für die Bereitstellung von Räumen zur Zwischenlagerung der Wattsedimentproben.

Den Mitarbeiterinnen und Mitarbeitern der thematischen Kartierung danken wir für die Durchführung der Probenahme und Siegrun Hellmann für die damit verbundenen organisatorischen Arbeiten.

Besonders bedanken möchten wir uns bei Rainer Jablonski, Heidelore Kuhr, Sascha Lebioda, Arne Panten, Beate Weiss und Monika Zoll, die an der Aufbereitung der Sedimentproben und der Durchführung der Analysen wesentlich beteiligt waren und damit zum Gelingen dieser Schadstoffkartierung beigetragen haben.

INHALTSVERZEICHNIS

1.	EIN	LEITUNG	7
2.	PRO	DBENAHME	9
3.	KOI	RNGRÖSSENVERTEILUNG	19
4.	SCF	IWERMETALLE	23
	4.1	Systematische Untersuchungen zum Analysenverfahren	23
		4.1.1 Analysenmethode	23
		4.1.1.1 Probenvorbereitung	23
		4.1.1.2 Analysenprinzipien	26
		4.1.2 Fazit	29
	4.2	Untersuchungen zur Wahl der geeigneten Korngrößenfraktion	29
		4.2.1 Elementgehalte in verschiedenen Korngrößenfraktionen	29
		4.2.1.1 Vergleich von abgeschätzten und analysierten Elementgehalten	
		in der <63µm-Fraktion und im Gesamt-Sediment	33
		4.2.1.2 Normierung auf Aluminium	36
		4.2.2 Fazit	37
	4.3	Routine-Analysen der <20µm-Fraktion der Wattsedimente	42
		4.3.1 Darstellung der Elementgehalte nach Art und Konzentration	42
		4.3.2 Feststellung von Belastungsschwerpunkten	53
	4.4	Vergleich der Analysenergebnisse	66
5.	CHI	ORKOHLENWASSERSTOFFE	73
	5.1	Systematische Untersuchungen zum Analysenverfahren	73
		5.1.1 Analysenmethode	76
		5.1.1.1 Probenvorbereitung	76
		5.1.1.2 Analysenprinzipien	76
	5.2	Routine-Analysen der unfraktionierten Wattsedimente	78
		5.2.1 CKW-Gehalte bezogen auf die Trockenmasse	78
		5.2.1.1 Darstellung der Elementgehalte nach Art und Konzentration	78
		5.2.1.2 Feststellung von Belastungsschwerpunkten	79

	5.2.2 CKW-Gehalte bezogen auf den organischen Kohlenstoffgehalt	87
	5.2.2.1 Darstellung der Elementgehalte nach Art und Konzentration	87
	5.2.2.2 Feststellung von Belastungsschwerpunkten	87
	5.3 Vergleich der Analysenergebnisse	98
6.	KONZEPTVORSCHLAG FUER EIN SCHADSTOFFMONITORING	104
7.	ZUSAMMENFASSUNG	110
8.	LITERATURVERZEICHNIS	113
9.	ANHANG	117
	Tab. 9.1 Abkürzungsverzeichnis	117
	Tab. 9.2 Kennzeichnung der Probenahmeorte	117
	Tab. 9.3 Koordinaten der Probenahmeorte	119
	Tab. 9.4 Korngrößenverteilung	122
	Tab. 9.5 Schwermetallgehalte (<20µm-Fraktion)	125
	Tab. 9.6 Schwermetallgehalte (Frakionen: 20-63μm, <63μm, >63μm, Gesamt)	129
	Tab. 9.7 Vergleich der Schwermetallgehalte (Schadstoffkartierung, BLMP)	135
	Tab. 9.8 Chlorkohlenwasserstoffgehalte (unfraktioniertes Sediment)	140
	Tab. 9.9 Chlorkohlenwasserstoffgehalte (Normierung auf Corg.)	144
	Abb. 9.1 Schwermetallgehalte (Abschätzung: unfraktioniertes Sediment)	148
	Abb. 9.2 Schwermetallgehalte (Abschätzung: <63µm-Fraktion)	151
	Abb. 9.3 Schwermetallgehalte (Normierung auf Aluminium)	154

1. Einleitung

Das Wattenmeer bildet die Übergangszone zwischen Festland und Nordsee und erstreckt sich über eine Küstenlänge von 450 km von Esbjerg (Dänemark) im Norden über die schleswigholsteinische Westküste, das Elbe-Weser-Gebiet, das niedersächsische Wattenmeer bis nach Den Helder (Niederlande) im Westen. Im seinem südlichen Teil ist das Wattenmeer durchschnittlich 7-10 km breit und erreicht im nordfriesischen Raum mit 10-20 km seine größte Ausdehnung [1, 2].

Das Wattenmeer läßt sich aufgrund der unterschiedlichen Wasserbedeckung in drei Bereiche einteilen [3, 5] (Abb. 1.1):

- den Unterwasserbereich (sublitoral): Bereich unterhalb der mittleren Niedrigwasserlinie. Dieser Bereich ist immer von Wasser bedeckt und durch tiefe Rinnen gekennzeichnet.
- den Auftauchbereich (eulitoral): Bereich zwischen mittlerer Niedrig- und mittlerer Hochwasserlinie. Hier finden die Ablagerungen des Schlick-, Misch- und Sandwatts statt.
- den Salzwiesenbereich (supralitoral): Bereich wird nur bei extremem Hochwasser überflutet, daher konnte sich hier eine zonierte Vegeatationsdecke ausbilden. Von der mittleren Hochwasserlinie bis zum Deich findet man erst die Seegras-, dann die Queller- und Andelund zuletzt die Schwingelzone.

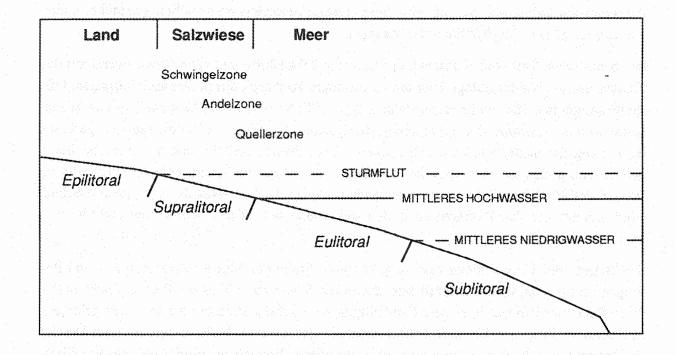


Abb. 1.1 Schematische Darstellung des Wattenmeeres (gezeichnet in Anlehnung an [5]).

Als sogenanntes "Watt" wird im allgemeinen der Auftauchbereich des Wattenmeeres verstanden. Dieser Bereich, der im Wechsel der Gezeiten täglich ca. alle 6 Stunden trockenfällt und wieder mit Salzwasser überflutet wird umfaßt ca. 50% der Gesamtfläche des Wattenmeeres [1, 2].

Nach ihrer Lage zur offenen See lassen sich nach Reineck [4] die folgenden drei Watttypen unterscheiden:

- Offene Watten hinter Strandwällen oder vorgelagerten Sandbänken. Dies sind die Wattgebiete zwischen Weser und Elbe sowie nördlich der Elbe bis Eiderstedt.
- Rückseitenwatten hinter schützenden Düneninseln bzw. Geestkerninseln (west-, ost- und nordfriesische Inseln).
- Buchten- und Ästuarwatten im Bereich der Meeresbuchten (Dollart, Leybucht, Jadebusen) oder der Flußmündungen (Elbe- und Wesermündung).

Das Wattenmeer ist mit einer Gesamtfläche von ca. 8000 km², davon gehören ca. 4500 km² zur Bundesrepublik Deutschland, eine der wenigen großen naturnahen Landschaftsräume Europas und in dieser Form einmalig [5]. Das Wattenmeer stellt durch seine hohe Produktion an Biomasse und die reiche Bodenfauna eine wesentliche Nahrungsgrundlage für die Jugendstadien verschiedener Fischarten der Nordsee dar (Kinderstubenfunktion). Außerdem ist es zahlreichen Vogelarten Brut-, Rast- und Nahrungsrevier. Einen Ersatz für das Wattenmeer gibt es nicht, es hat eine herausragende ökologische Bedeutung.

Das Wattenmeer ist mit weitem Abstand das am meisten durch Schadstoffeinträge gefährdete Gebiet der Nordsee. Infolge der steigenden Siedlungsdichte, des Fremdenverkehrs und der zunehmenden Industriealisierung wird dieses Gebiet besonders empfindlich gegenüber weiteren anthropogenen Eingriffen und Belastungen.

Die zum großen Teil vom Menschen produzierten Schadstoffe gelangen überwiegend mit den Flüssen und als Niederschläge über die Atmosphäre aber auch durch Direkteinleitungen, Offshore-Tätigkeiten (Öl- und Erdgasgewinnung) und Schiffahrt in die Nordsee [5]. Die Schadstoffe werden aufgrund der allgemeinen Zirkulation, die gegen den Uhrzeigersinn gerichtet ist, entlang der niederländischen, deutschen und dänischen Küste durch die deutsche Bucht geleitet und gefährden hier besonders das Wattenmeer [6]. Die Schadstoffe sind entweder im Wasser gelöst oder an Schwebstoffe adsorbiert. Die an die Schwebstoffe gebundenen Schadstoffe können mit den Partikeln zu Boden sinken und sich in den Sedimenten und Organismen anreichern [7].

Seit Beginn der Umweltdiskussion steht auch die Frage der Meeresverschmutzung und ihre Folgen im Mittelpunkt des öffentlichen Interesses. Schon 1974 wies der Rat der Sachverständigen für Umweltfragen in seinem Umweltgutachten auf das Problem der ins Meer gelangenden Schadstoffmengen hin und machte deutlich, daß besondere Anstrengungen im Bereich des Wattenmeerschutzes notwendig sind, wenn dieser Bereich in seiner ökologischen Funktionsfähigkeit auch in Zukunft erhalten bleiben soll.

Aus diesem Grund wurden bereits mehrere Untersuchungen über die Schadstoffbelastung der Nordsee [6, 7] und speziell des Wattenmeeres durchgeführt [8 - 14]. Diese Untersuchungen stellen jedoch nur Momentaufnahmen der Schadstoffbelastung weniger Elemente in ausge-

wählten Bereichen des Wattenmeeres dar.

Um sowohl die räumliche als auch die zeitliche Entwicklung der Schadstoffbelastung des Wattenmeeres festzustellen, sind längerfristige Untersuchungen über mehrere Jahre besser noch Jahrzehnte durchzuführen. Zu diesem Zweck wurde 1974 mit dem internationalen Überwachungsprogramm für die Nordsee "Joint Monitoring Programme (JMP)" im Rahmen der Übereinkommen von Oslo und Paris begonnen [15]. 1980 startete dann das nationale "Gemeinsames Bund/Länder-Meßprogramm für die Nordsee (BLMP)", das sich im wesentlichen mit der Belastungssituation der Küstenregion und der Ästuare befaßt [16 - 19].

Zur Bestimmung von Schadstoffen in den Sedimenten werden in den beteiligten Analysenlabors des Bund/Länder-Meßprogramms z. T. unterschiedliche Methoden der Probenaufbereitung und Schadstoffanalyse angewendet. Dieses Vorgehen führte bisher mitunter zu unterschiedlichen Ergebnissen an identischen Proben. Es wird daher im Bund/Länder-Meßprogramm für die Analyse von Wattsedimenten ein geeignetes und weitgehend einheitliches Analysenverfahren angestrebt, um eine Vergleichbarkeit der analytischen Daten bei hoher Qualität sicherzustellen. Ein grundsätzliches Problem stellte sich bei der Wahl der geeignetsten Sedimentfraktion für die analytischen Untersuchungen. Im Bund/Länder-Meßprogramm wird die Schwermetallanalytik in der <20µm-Fraktion durchgeführt, im Joint Monitoring Programme jedoch in der <63µm-Fraktion. Die Analysenergebnisse der Chlorkohlenwasserstoffbestimmung liegen dagegen jeweils nur für das Gesamtsediment vor. Auch hier wird eine sinnvolle Vereinheitlichung angestrebt.

Von Juni 1989 bis Juni 1992 wurden im Rahmen des Projekts "Schadstoffkartierung in Sedimenten des deutschen Wattenmeeres" die anorganischen und organischen Schadstoffe flächendeckend im Sediment des Wattenmeeres bestimmt. Dabei waren die Vorgaben des Bund/Länder-Meßprogramms und des Joint Monitoring Programme zu berücksichtigen.

Die Ziele des Projekts "Schadstoffkartierung in Sedimenten des deutschen Wattenmeeres" sind:

- Darstellung der Schadstoffverteilungsmuster nach Art und Konzentration;
- Fixierung von Belastungsschwerpunkten im Wattenmeer;
- Erarbeitung eines Konzeptvorschlags für ein Schadstoffmonitoring in den Wattsedimenten im Rahmen des nationalen Überwachungsprogramms.

Die Schadstoffkartierung im Eulitoral des deutschen Wattenmeeres wurde synchron mit einer sedimentologischen und biologischen Kartierung durchgeführt. Die zusammenfassende Auswertung beider Vorhaben kann als ein Beitrag zur Integration des Schadstoffmonitorings im Sediment in eine allgemeine ökologische Umweltbeobachtung des Wattenmeeres verstanden werden, wie sie im TWTF (Trilateral Waddensea Task Force) vorgesehen ist.

2. Probenahme

Die Auswahl der geeigneten Probenorte für die Schadstoffkartierung erfolgte in Anlehnung an eine flächendeckende biologische und sedimentologische Kartierung der Wattgebiete ("Thematische und Sensitivitäts Kartierung des gesamten deutschen Wattenmeeres", UBA-FuE-Vorhaben 102 04 232) [20, 21]. Im Rahmen dieser Sensitivitätskartierung wurde ein flächendeckendes Stationsnetz im Gitterabstand von 1 km über den gesamten Auftauchbereich (Eulitoral) der Watten mit unterschiedlicher Intensität beprobt. Die diesem Raster zugrunde liegenden sogenannten "Netzstationen" lieferten Informationen zur Besiedlung der Orte durch Makrobenthonten sowie zur Korngrößenzusammensetzung und Scherfestigkeit der Sedimente. Eine standardisierte Charakteristik abiotischer und biotischer Parameter der Lebensräume, denen diese Probenorte entstammen, ergänzen diese Informationen.

Pro Jahr ergaben sich auf diese Weise ca. 350 gleichmäßig verteilte Stationen, aus denen während der Begehung ca. 70 bis 100 sogenannte "Intensivstationen" ausgewählt wurden, die weitere Informationen zur Besiedlung durch Meio- und Mikrophytobenthonten lieferten. Die Auswahl und Anzahl dieser Stationen richtete sich nicht nach einem vorgegebenen Raster sondern nach der Habitatdiversität im jährlich zu bearbeitendem Areal, so daß die Daten der "Intensivstationen" eine gewisse Repräsentanz der Homogenität von Lebensräumen im untersuchten Gebiet beinhalten.

Von September 1989 bis November 1991 wurden für die Schadstoffkartierung insgesamt ca. 100 Proben an einer weiteren Auswahl dieser Intensivstationen genommen. Nach dieser Vorgehensweise sollten die Ergebnisse eine Markierung von Gebieten unterschiedlicher Schadstoffbelastungen über den gesamten Wattenbereich zulassen. Die Abbildung 2.1 gibt einen Überblick über die Lage der Probenahmeorte, die in den Wattgebieten entlang der niedersächsischen und schleswig-holsteinischen Küste verteilt sind. Detaillierte Karten der Wattgebiete sind in den Abbildungen 2.2.1 bis 2.2.7 wiedergegeben.

Die Probenahme für die Schwermetallanalyse und zur Bestimmung der Chlorkohlenwasserstoffe erfolgte im Umlagerungshorizont der Sedimente bis zu einer Tiefe von 7 bis 10 cm. Für die Schwermetallanalyse wurden je nach Sedimentart pro Probe 3 bis 5 Stechrohre (Acrylglas, Ø 2 cm) verwendet. Für die Chlorkohlenwasserstoff-Analyse wurden je 2 Stecher aus elektropoliertem V2a-Stahl (Ø 5,5 cm) verwendet. Die Proben wurden vor Ort unter Vermeidung von Kontamination verschlossen und umgehend tiefgefroren zwischengelagert.

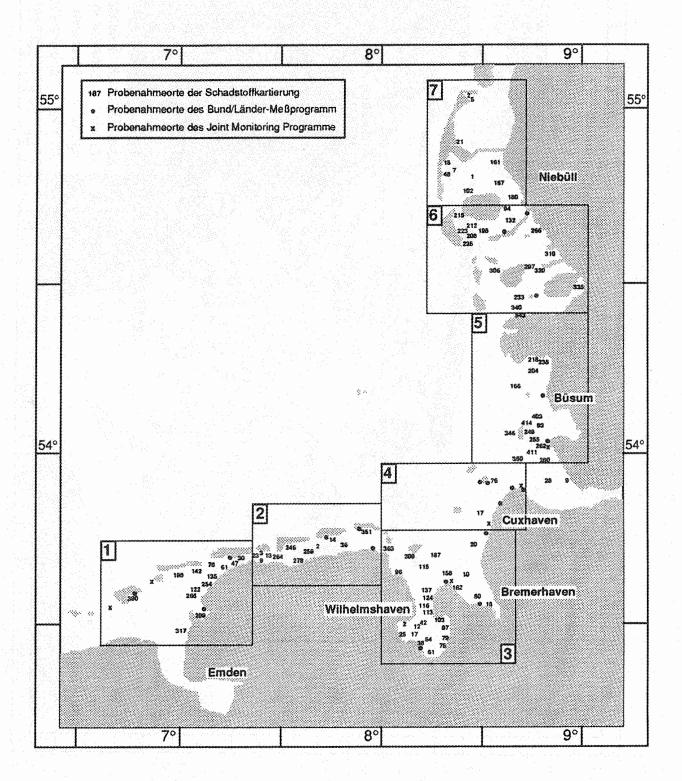


Abb. 2.1 Übersichtskarte der Probenahmeorte im Wattenmeer. Die Detailkarten sind in den Abbildungen 2.2.1 bis 2.2.7 dargestellt.

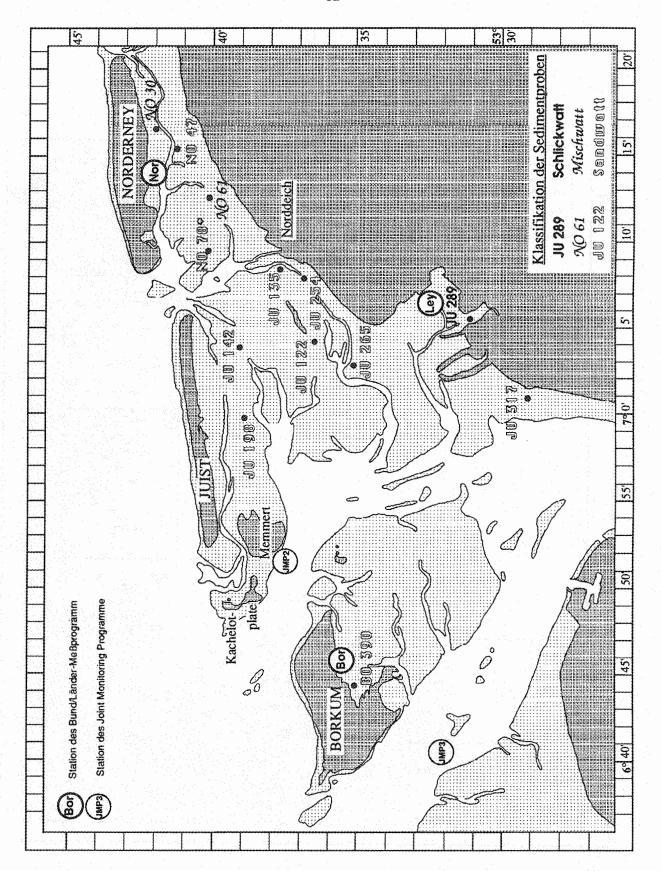


Abb. 2.2.1 Detailkarte mit den Probenahmeorten und den Wattypen zwischen Borkum und Norderney. Die Wattypen sind durch unterschiedliche Schriftarten gekennzeichnet. (Die Karte wurde gezeichnet in Anlehnung an [22]).

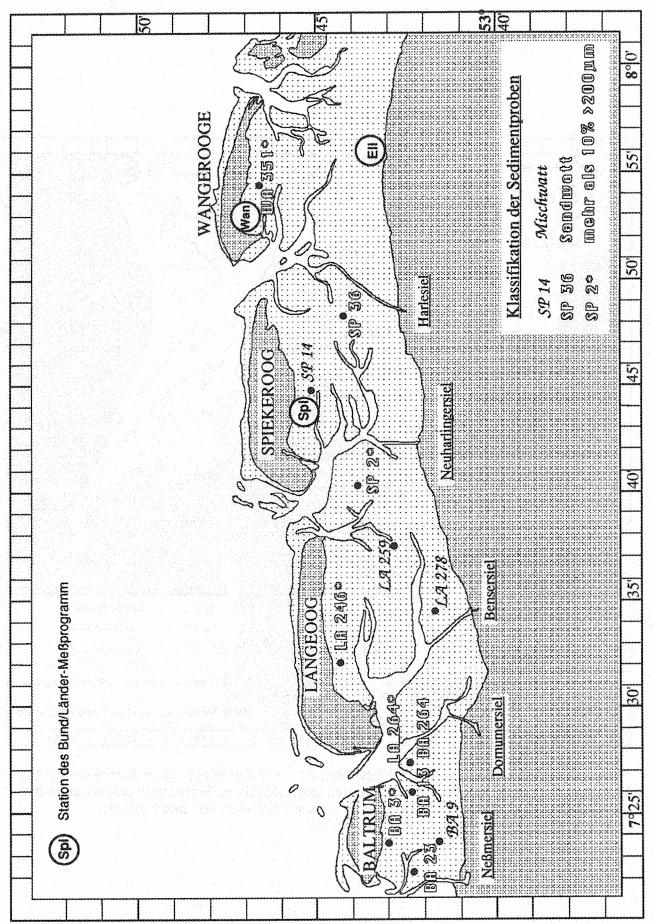


Abb. 2.2.2 Detailkarte mit den Probenahmeorten und den Wattypen zwischen Baltrum und Wangerooge. Die Wattypen sind durch unterschiedliche Schriftarten gekennzeichnet. (Die Karte wurde gezeichnet in Anlehnung an [22]).

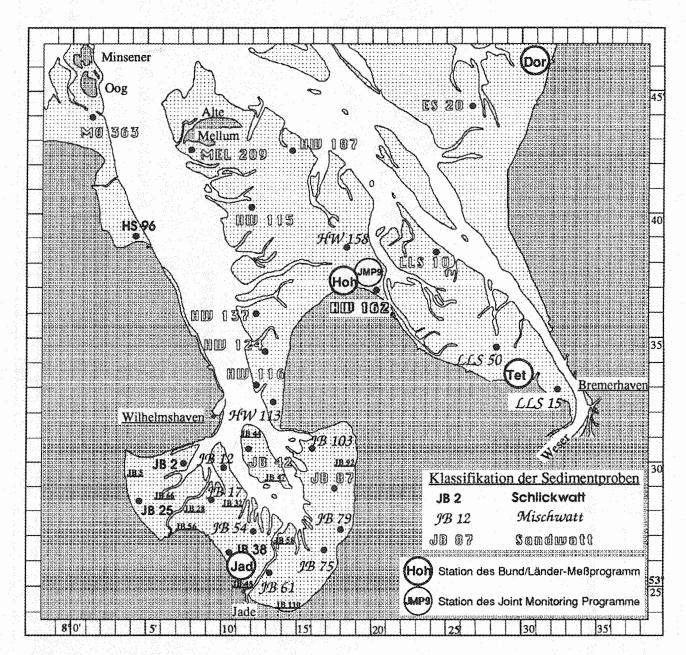


Abb. 2.2.3 Detailkarte mit den Probenahmeorten und den Wattypen im Jadebusen und Hoher Weg. und Norderney. Die Wattypen sind durch unterschiedliche Schriftarten gekennzeichnet. Von den unterstrichenen Proben (z.B. <u>JB 5</u> wurde nur die CKW-Analytik durchgeführt. (Die Karte wurde gezeichnet in Anlehnung an [22]).

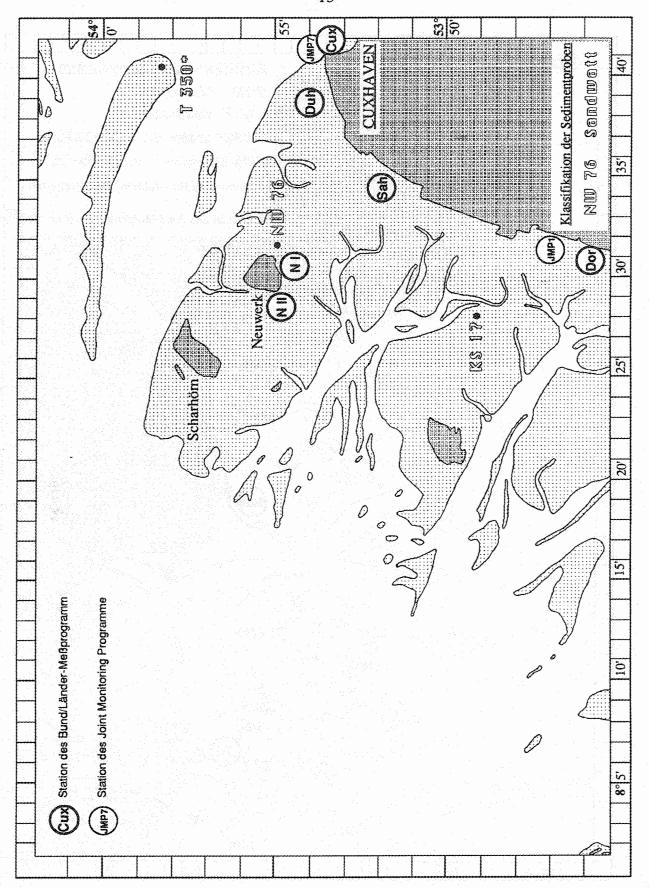


Abb. 2.2.4 Detailkarte mit den Probenahmeorten und den Wattypen im Wurster Watt. Die Wattypen sind durch unterschiedliche Schriftarten gekennzeichnet. (Die Karte wurde gezeichnet in Anlehnung an [22]).

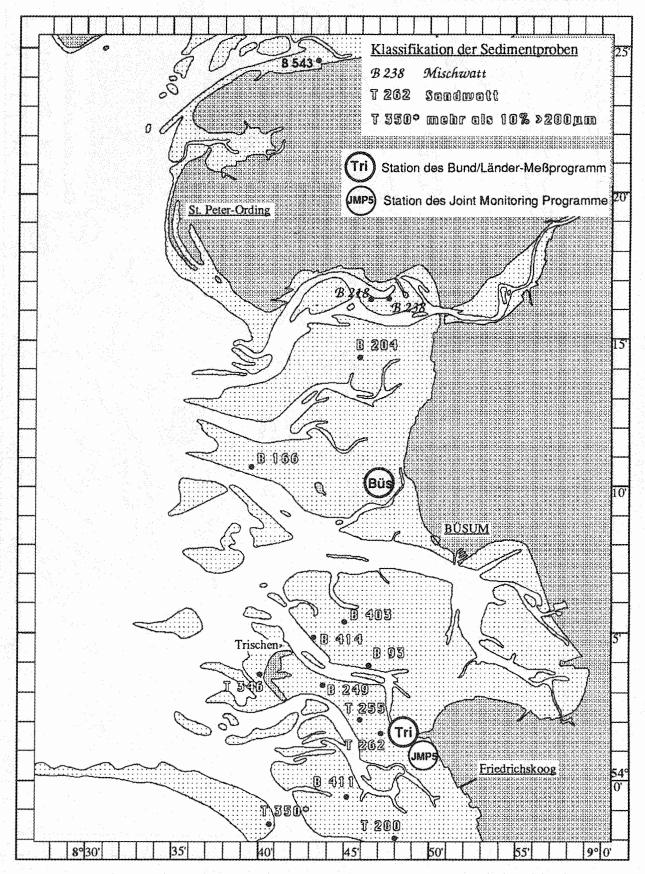


Abb. 2.2.5 Detailkarte mit den Probenahmeorten und den Wattypen zwischen der Elbemündung und Eiderstedt. Die Wattypen sind durch unterschiedliche Schriftarten gekennzeichnet. (Die Karte wurde gezeichnet in Anlehnung an [23]).

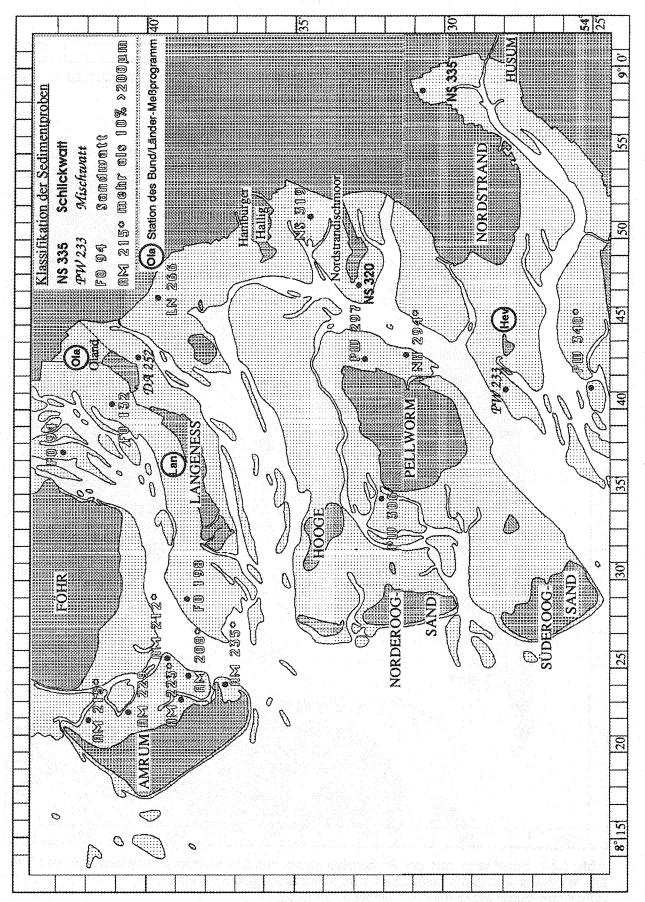


Abb. 2.2.6 Detailkarte mit den Probenahmeorten und den Wattypen zwischen Eiderstedt und Föhr. Die Wattypen sind durch unterschiedliche Schriftarten gekennzeichnet. (Die Karte wurde gezeichnet in Anlehnung an [23]).

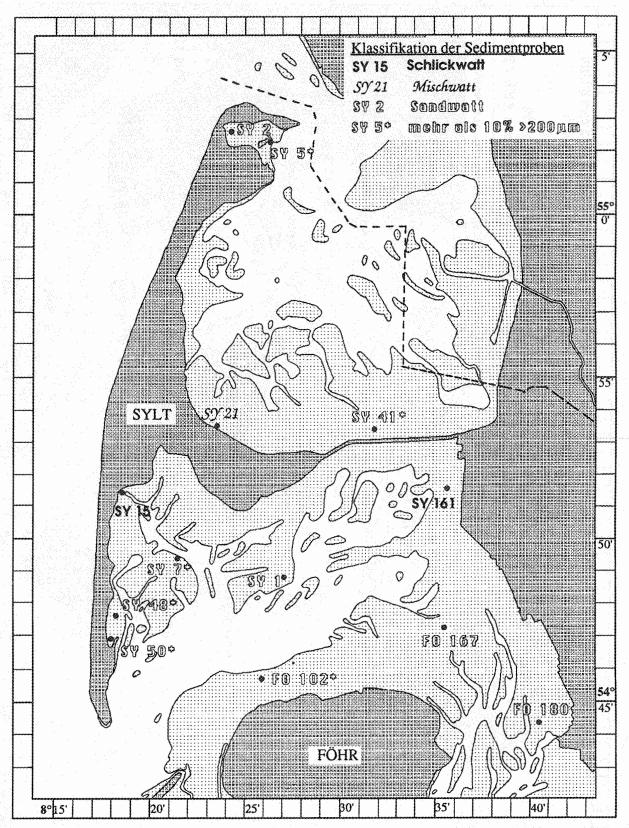


Abb. 2.2.7 Detailkarte mit den Probenahmeorten und den Wattypen zwischen Föhr und Sylt. Die Wattypen sind durch unterschiedliche Schriftarten gekennzeichnet. (Die Karte wurde gezeichnet in Anlehnung an [23]).

3. Korngrößenverteilung

Die Sedimente des Wattenmeeres verteilen sich in Abhängigkeit von der Wassertiefe, den Tideströmungen und dem Seegang, wobei sie zur Tidehochwasserlinie feiner werden [24]. Diese Verteilung kann örtlich durch Priele, Senken und anstehendes, älteres Material unterbrochen werden. Ebenso können wechselnde dynamische Bedingungen die Sedimentzonen vorübergehend verschieben. Die Wattsedimente setzen sich aus einem stark wechselnden Gemisch von Ton, Silt und Sand zusammen. Aufgrund ihrer Korngrößenverteilung lassen sich die Sedimente der Watten nach Little-Gadow in die drei Sedimenttypen Schlickwatt, Mischwatt und Sandwatt einteilen [24]:

- Schlickwatt: Silt- und Tonanteil (<63µm-Fraktion) ist größer als 50%

- Mischwatt: Silt- und Tonanteil (<63µm-Fraktion) liegt zwischen 5 und 50%

- Sandwatt: Silt- und Tonanteil (<63µm-Fraktion) liegt zwischen 0 und 5%

Mittelsandanteil (200-630µm-Fraktion) liegt zwischen 0 und 10%

Probenvorbereitung

Die im Stechrohr tiefgefrorenen Sedimentproben wurden im Labor gefriergetrocknet und anschließend homogenisiert. Dann wurden von der unfraktionierten Sedimentprobe zunächst 5 bis 10 g abgenommen. Die verbleibende Sedimentprobe wurde wie von Ackermann et al. [25] beschrieben in verschiedene Korngrößen separiert: Die Korngrößenfraktionen <200μm, 200-630μm und >630μm wurden durch Trockensiebung mit Hilfe von Kunststoffsieben abgetrennt und ausgewogen. Aus der <200μm-Fraktion wurden anschließend die Fraktionen <20μm, 20-63μm und 63-200μm durch Naßsiebung (Kunststoffsiebe) mit Reinstwasser im Ultraschallbad abgetrennt. Die Sedimentfraktionen wurden aus den Suspensionen abzentrifugiert, gefriergetrocknet und ausgewogen.

Ergebnisse

Die Abbildung 3.1 gibt eine Übersicht der beprobten Wattsedimenttypen durch eine farbliche Kennzeichnung. Bei den untersuchten Wattsedimentproben handelt es sich nur zu ca. 10% um Sedimente des Schlickwatts und zu ca. 30% um Sedimente des Mischwatts. Dagegen handelt es sich bei ca. 60% der Proben um Sedimente des Sandwatts. Von diesen Sedimenten sind ca. 1/3 gröbere, schlechter sortierte Sande, bei denen der Anteil an der >200µm-Fraktion mehr als 10% beträgt.

Die detaillierten Ergebnisse der Korngrößenfraktionierung der Wattsedimentproben geben die Abbildungen 3.2.1 und 3.2.2 in Form von Balkendiagrammen wieder. Die dazugehörigen Zahlenwerte finden sich in der Tabelle 9.4 im Anhang dieses Berichts.

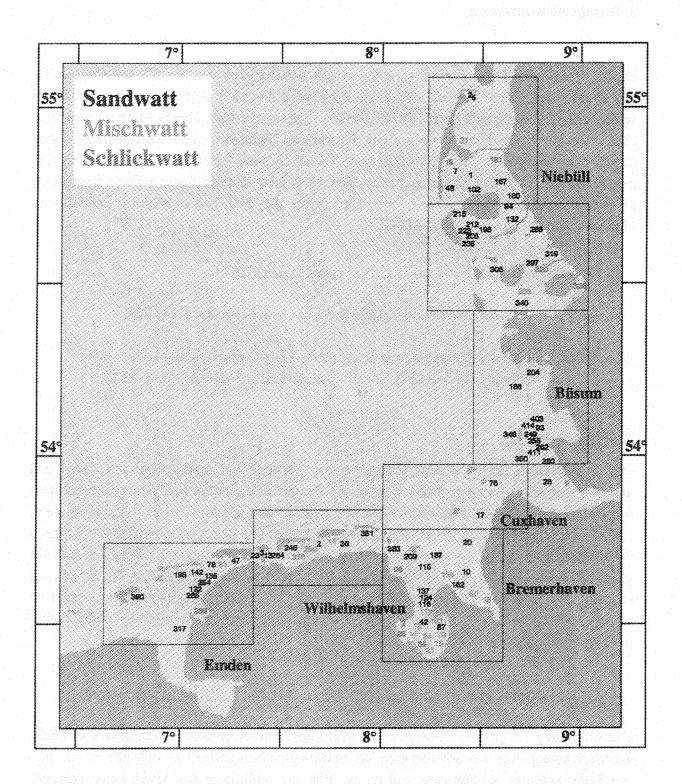


Abb. 3.1 Übersichtskarte der Probenahmeorte mit den entsprechenden Wattsedimenttypen.

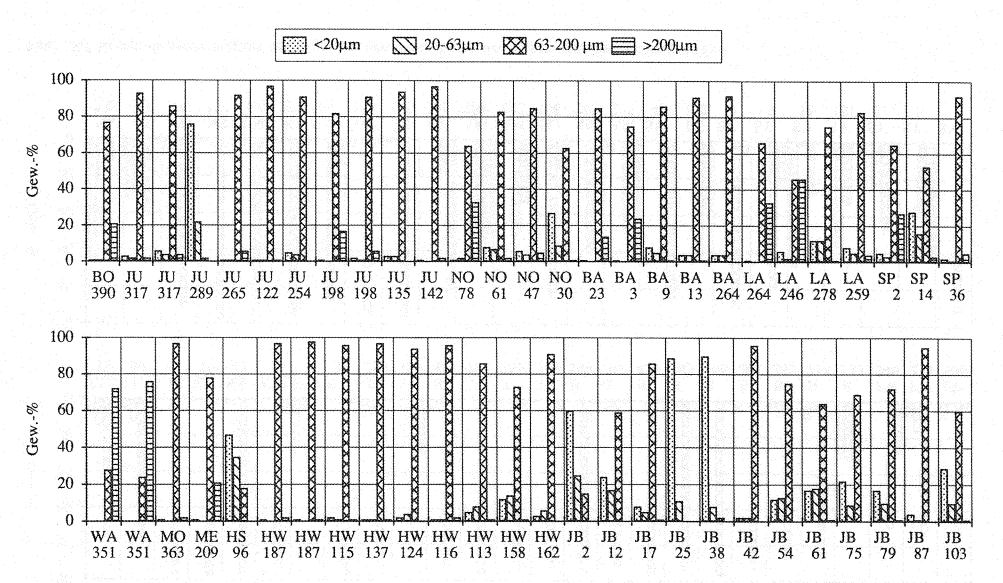


Abb. 3.2.1 Korngrößenverteilung der Sedimente aus den Wattgebieten vor der niedersächsischen Küste (Borkum bis Jadebusen).

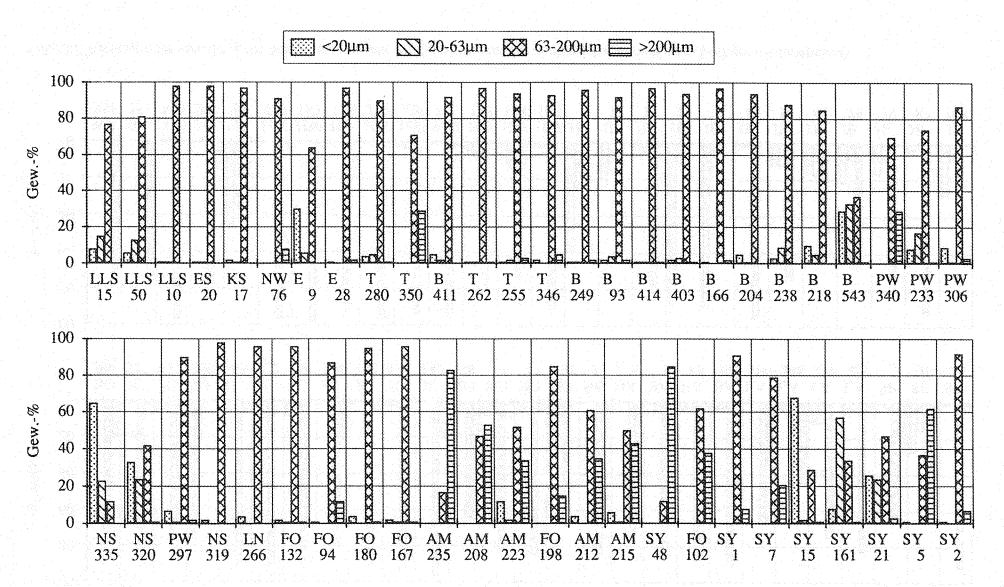


Abb. 3.2.2 Korngrößenverteilung der Sedimente aus den Wattgebieten der Weser- und Elbemündung bis Sylt.

4. Schwermetalle

Schwermetalle gehören seit Beginn der Diskussion über Umwelt- und Meeresverschmutzung zu den am meisten untersuchten Schadstoffgruppen. Merian [26] gibt in einer umfassenden Zusammenstellung die Eigenschaften und Wirkungen von über 30 umweltrelevanten Elementen wieder. Für die Beurteilung der räumlichen und zeitlichen Entwicklung der Belastungssituation der Nordsee bzw. des Wattenmeeres sind Sedimentanalysen von besonderem Vorteil, da sich die Schwermetalle in den Binnen- und Küstengewässern überwiegend an die Sinkstoffe anlagern, mit diesen zum Boden sinken und sich im Sediment anreichern [27].

Eine Voraussetzung für die Bestimmung von anorganischen Schadstoffen in den Wattsedimenten war, daß sie in Anlehnung an die nationalen und internationalen Überwachungsprogramme der Nordsee durchgeführt werden sollte. Demzufolge wurden in dieser Arbeit insbesondere die Schwermetallgehalte Cr, Fe, Ni, Cu, Zn, As, Pb, Cd und Hg sowie die Gehalte des Aluminiums und des organischen Kohlenstoffs in den Wattsedimenten analysiert. Im Rahmen des Bund/Länder-Meßprogramms werden die Schwermetallgehalte in der Sedimentfraktion <20µm analysiert im Joint Monitoring Programme wird jedoch die Sedimentfraktion <63µm untersucht. Für die Schwermetallanalysen der Schadstoffkartierung war es daher erforderlich zu untersuchen, welche Korngrößenfraktion für ein Monitoring in den Wattsedimenten geeignet ist.

4.1 Systematische Untersuchungen zum Analysenverfahren

Zu Beginn der routinemäßigen Schwermetallbestimmung in den Wattsedimenten wurden systematische Untersuchungen durchgeführt, um die Probenaufbereitung zu optimieren und ein geeignetes Analysenverfahren auszuarbeiten, um eine gleichbleibend hohe Qualität der erhaltenen Analysenergebnisse sicherzustellen.

Dazu wurde eine Analysenmethode ausgearbeitet, die auf einer relativ einfachen Probenaufbereitung (Mikrowellenaufschluß mit konz. HNO₃) und der anschließenden Elementkonzentrationsbestimmung mit der Totalreflexions-Röntgenfluoreszenzanalyse (TRFA) und der Atomabsorptionsspektroskopie (AAS) basiert und von der Instrumentellen Neutronenaktivierungsanalyse (INAA) unterstützt wird [28]. Die Abbildung 4.1 zeigt schematisch den Ablauf des Analysenverfahrens.

4.1.1 Analysenmethode

4.1.1.1 Probenvorbereitung

Die Optimierung der Probenaufbereitung für die Wattsedimente wurde anhand eines Vergleichs von verschiedenen Aufschlußmethoden durchgeführt. Zu diesem Zweck wurde die Effektivität des Druckaufschluß und des Mikrowellenaufschluß an einem zertifizierten Referenzmaterial, dem Sedimentstandard NBS 1646 ("Estuarine Sediment") verglichen.

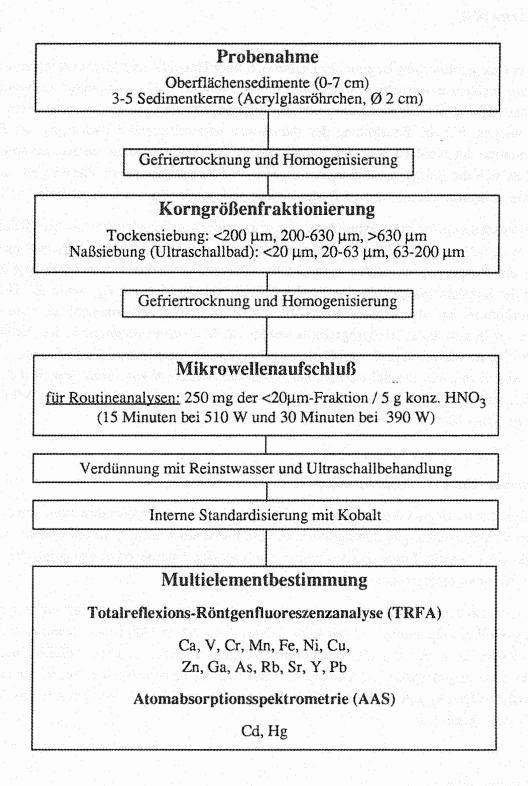


Abb. 4.1 Schematische Darstellung des Analysenverfahrens zur Multielementbestimmung in Wattsedimenten.

Der Druckaufschluß wurde mit 100 mg des Sedimentstandards und 5 g konz. HNO₃ bzw. 5 g konz. HNO₃/HF (Merck, suprapur[®]) durchgeführt und dauerte 6 Stunden bei 165 °C. Beim Mikrowellenaufschluß (MDS-81D, Kürner Analysentechnik) konnten ca. 250 mg des Sedimentstandards eingesetzt werden und die Aufschlußdauer betrug nur 45 Minuten (15 min. bei 510 W, 30 min. bei 390 W). Nach dem Aufschluß wurden die Proben mit 30 ml bzw. mit 70 ml Reinstwasser verdünnt und ungelöste Rückstände im Ultraschallbad dispergiert. Auf diese Weise entstand eine feinkörnige Aufschluß-Suspension, die sich sehr gut mit Hilfe der Totalreflexions-Röntgenfluoreszenzanalyse (TRFA) und der Atomabsorptionsspektroskopie (AAS) bestimmen läßt. Die Abbildung 4.2 zeigt eine gute Übereinstimmung der vier Aufschlußmethoden mit den zertifizierten Konzentrationen des Standardmaterials.

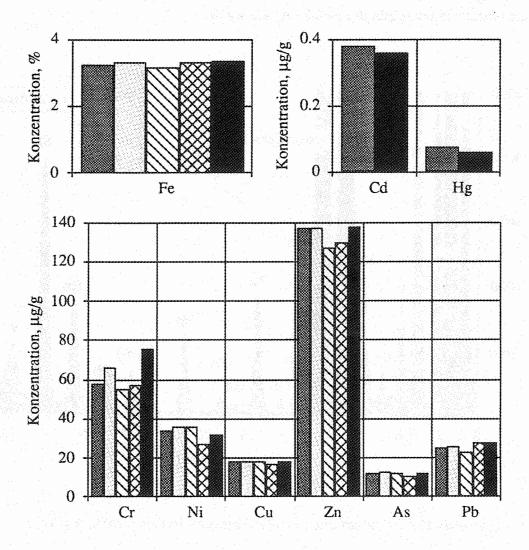


Abb. 4.2 Vergleich der verschiedenen Aufschlußmethoden mit den zertifizierten Werten des NBS-Standards 1646 ("Estuarine Sediment"): Mikrowellenaufschluß mit konz. HNO₃, ☐ Mikrowellenaufschluß mit konz. HNO₃/HF, ☐ Druckaufschluß mit konz. HNO₃, ☐ Druckaufschluß mit konz. HNO₃/HF und ☑ zertifizierte Werte des Referenzmaterials.

4.1.1.2 Analysenprinzipien

TRFA Die Multielementbestimmung erfolgte mit dem TRFA-Spektrometer "EXTRA II" (Rich. Seifert & Co, Ahrensburg), das mit einem 80 mm² Si (Li)-Detektor und zwei 2 kW Feinfokus-Röntgenröhren (Mo und W) ausgestattet ist, die bei 50 kV und max. 38 mA betrieben werden. Die elektronische Ausstattung und die Peak-Entfaltungs-Software wurden von Link Analytical Ltd (High Wycombe, U. K.) gestellt. Einzelheiten zum Prinzip der TRFA sind bei Prange & Schwenke beschrieben [29]. Zur internen Standardisierung wurde eine Kobaltlösung (Merck) zur Aufschlußlösung zugefügt (4000 μg/g Co, bezogen auf die Sedimenteinwaage). Ein 10 μl-Aliquot dieser Lösung wurde auf den Quarz-Probenträger pipettiert und im Vakuum zur Trockene eingedampft. Die Multielementbestimmung wurde bei Mo-Anregung und einer Meßzeit von 3000 s durchgeführt. Ein typisches TRFA-Spektrum eines Wattenmeersediments gibt die Abbildung 4.3 wieder.

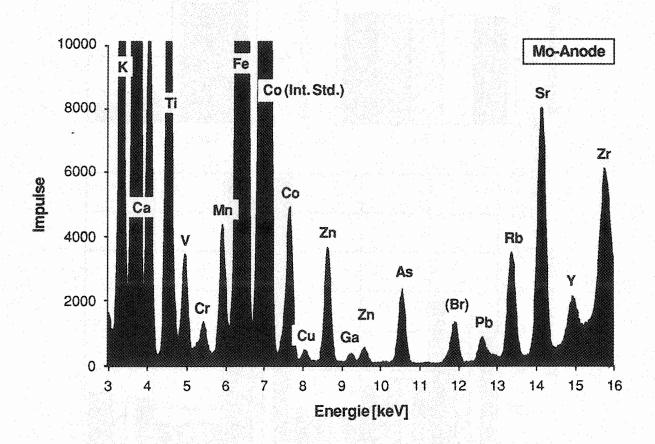


Abb. 4.3 Typisches TRFA-Spektrum eines Wattenmeersediments (Fraktion <20µm).

AAS Die Bestimmung von Cd und Hg wurde mit der Atomabsorptionsspektroskopie (AAS) durchgeführt und zwar aus derselben Aufschlußlösung, die auch für die TRFA-Analysen verwendet wurde. Die Cd-Bestimmung erfolgt mit einem 3030 Z von Perkin-Elmer, Hg wurde mit Hilfe der Kaltdampftechnik an einem PE 2380 / MHS 20 analysiert.

<u>INAA</u> Die Instrumentelle Neutronenaktivierungsanalyse (INAA) wurde zur Bestimmung des Al-Gehalts in den Sedimentproben eingesetzt und diente außerdem als unabhängige Analysenmethode für Referenzuntersuchungen. Die Analysen wurden an ca. 50 mg der gefriergetrockneten und homogenisierten Sedimentprobe mit Hilfe des 5 MW-Forschungsreaktor bei GKSS durchgeführt, der einen thermischen Neutronenfluß von ca. 2-10¹³n-cm⁻²·s⁻¹ liefert.

<u>TOC</u> Die Bestimmung des Gehaltes an organischem Kohlenstoff erfolgte mit Hilfe eines modifizierten C-Analysators (Modell 5000) der Firma Astro (Huston, Texas). Es wurden 1 bis 10 mg der gefriergetrockneten und homogenisierten Sedimentprobe nach dem Austreiben anorganischer Karbonate mit 20 ml ca. 4 N HCl im Sauerstoffstrom bei 950°C verbrannt. Die Messung des gebildeten CO₂ erfolgte mit Hilfe eines Infrarot-Detektors. Die Eichung wurde mit Oxalsäure durchgeführt [54].

Analytische Qualitätssicherung

Blindwerte; Nachweisgrenzen; Genauigkeit

Die Blindwerte, d. h. die Elementgehalte in den Aufschlußlösungen ohne Sedimentprobe sind für V, Mn, Ga, As, Rb, Sr, Y und Pb <10 ng/g und für Cr, Ni, Cu und Zn <50 ng/g. Die Gehalte für Ca und Fe liegen unter 1 μ g/g. Im Vergleich mit den Elementgehalten der Wattsedimente sind die Blindwerte vernachlässigbar.

Die Nachweisgrenzen der TRFA für diese Elemente liegen für die Fraktion $<20\mu m$ zwischen 1 und 20 $\mu g/g$ bei einer Meßzeit von 1000 s. Die Cd- und Hg-Gehalte der Wattsedimente sind im Vergleich mit den Nachweisgrenzen sehr gering, die ungünstigerweise beeinflußt werden durch die Streuung der Primärstrahlung an der Probenmatrix. Deshalb werden im Rahmen dieser Untersuchungen Cd und Hg mit Hilfe der Atomabsorptionsspektroskopie analysiert.

Die Genauigkeit der Analysen, d. h. die Standardabweichung von sechs Wiederholungsbestimmungen variiert zwischen 5 und 15% (Abb. 4.2).

Richtigkeit

Zur Beurteilung der Richtigkeit der Analysenergebnisse, d. h. zur Sicherung der Analysenqualität wurde das Referenzmaterial NBS 1646 ("Estuarine Sediment") mit den beschriebenen verschiedenen Methoden aufgeschlossen und anschließend die Elementkonzentrationen mit der TRFA und der AAS bestimmt. Es wurde eine gute Übereinstimmung der vier Aufschlußmethoden mit den zertifizierten Konzentrationen des Standardmaterials erreicht. Beim Mikrowellenaufschluß des Sedimentstandards mit konz. HNO₃ liegt der Fehler für die Richtigkeit der Analysenergebnisse zwischen 5 und 20%.

Um das Analysenverfahren zusätzlich auf seine Richtigkeit zu überprüfen, wurden die Elementgehalte sowohl im Gesamtsediment als auch in den einzelnen Korngrößenfraktionen mit Hilfe der TRFA und der INAA analysiert. Für die TRFA-Analysen wurden die 20-63µm-und die >63µm-Fraktion sowie das Gesamtsediment mit konz. HNO₃/HF aufgeschlossen. Die <20µm-Fraktion wurde nur mit konz. HNO₃ aufgeschlossen. In der Abbildung 4.4 sind

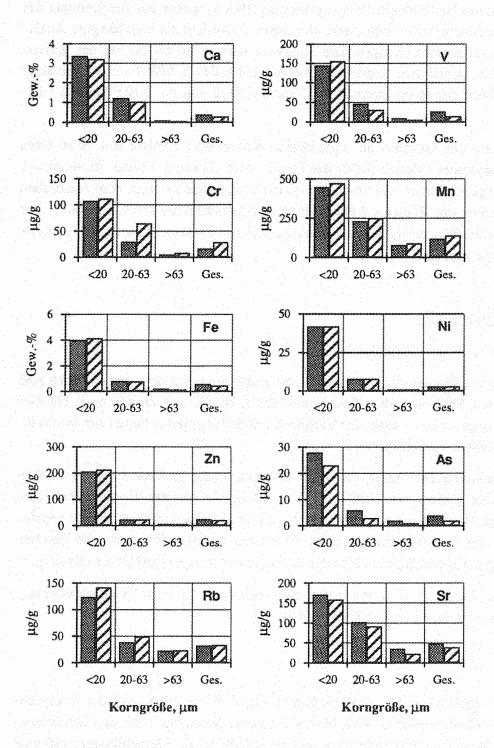


Abb. 4.4 Vergleich von TRFA-() und INAA-() Analysenergebnissen in den verschiedenen Korngrößenfraktionen eines Wattsediments.

die Ergebnisse dieses Vergleichs dargestellt. Es besteht eine gute Übereinstimmung zwischen den Elementkonzentrationen in den einzelnen Fraktionen. Der Fehler für die Richtigkeit der Ergebnisse liegt zwischen 5 und 20%.

Der Unterschied in den Chromgehalten in der 20-63µm-Fraktion ist mit sehr großer Wahrscheinlichkeit auf in Schwermineralen gebundenes Chrom (z. B. in Ilmenit) zurückzuführen. Für das Vorhandensein von Schwermineralen in der 20-63µm-Fraktion sprechen die im Vergleich mit den anderen Fraktionen ungewöhnlichen hohen Gehalte an Zr (im Bereich von ca. 1000 µg/g) und Th, Hf, U, Ce, La, Nd, Sm etc. im Bereich von ca. 5 bis 500 µg/g. Diese Elemente, die in der 20-63µm-Fraktion mit der INAA analysiert wurden weisen u. a. auf die Schwerminerale Zirkon, Monazit und Ilmenit hin. Schwerminerale sind zu ca. 0,2 bis 3,5 Gew.% in der Feinsandfraktion der Wattsedimente enthalten [5, 5a, 24].

Untersuchungen an den "wässrigen Überständen", die nach dem Abzentrifugieren der <20µm-Fraktion dekantiert werden haben ergeben, daß diese Elementgehalte im Vergleich zu den Gehalten in dem abzentrifugierten Anteil vernachlässigbar sind.

4.1.2 Fazit

Als Ergebnis der systematischen Untersuchungen zum Analysenverfahren ist festzuhalten:

- der Mikrowellenaufschluß stellt eine gute Aufschlußmethode zur routinemäßigen Multielementbestimmung in der <20μm-Faktion dar. Die einfache Handhabung, die kurze Aufschlußzeit, die relativ große Sedimenteinwaage und die direkte Verdünnung im Aufschlußgefäß im Vergleich zum Druckaufschluß machen den Mikrowellenaufschluß zu einer vorteilhaften Probenaufbereitungsmethode für die TRFA und AAS;
- die Totalreflexions-Röntgenfluoreszenzanalyse (TRFA) ist aufgrund der einfachen Quantifizierung mit interner Ein-Element-Standardisierung ein sehr attraktives Analysenprinzip für die routinemäßige Multielementbestimmung in Wattsedimenten, da sie die gleichzeitige Bestimmung nahezu aller geforderten Elemente wie Cr, Fe, Ni, Cu, Zn, As und Pb sowie zusätzlicher Elemente wie Ca, V, Mn, Ga, Rb, Sr und Y ermöglicht.

4.2 Untersuchungen zur Wahl der geeigneten Korngrößenfraktion

4.2.1 Elementgehalte in verschiedenen Korngrößenfraktionen

Schwermetalle reichern sich vor allem in der Feinkornfraktion der Sedimente an, in der Tonpartikel und organische Bestandteile dominieren. Der Grobanteil der Sedimente, der hauptsächlich aus Sand und Muschelschill besteht ist weitgehend frei von Schwermetallen [27]. Dementsprechend schwankt der Schwermetallgehalt der Sedimente je nach ihrem Sandanteil. Für einen sinnvollen Vergleich der Schwermetallgehalte unterschiedlicher Wattsedimenttypen wird daher in den bestehenden Überwachungsprogrammen eine Standardisierung hinsichtlich der Korngröße durchgeführt. Und zwar werden die Schwermetallgehalte im Rahmen des nationalen Bund/Länder-Meßprogramms in der Sedimentfraktion <20µm analysiert und im internationalen Joint Monitoring Programme in der Sedimentfraktion <63µm.

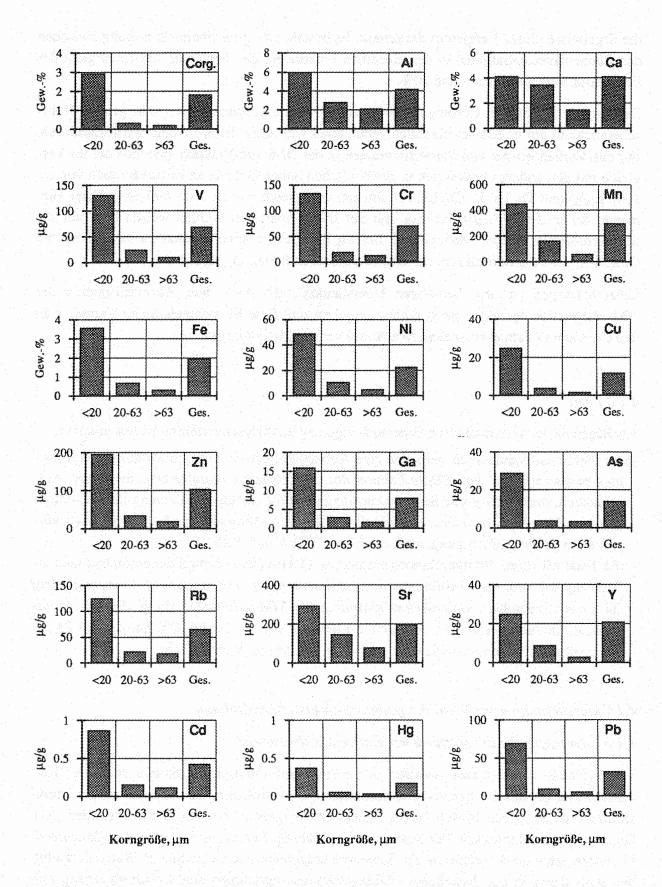


Abb. 4.4.1 Elementgehalte in den verschiedenen Korngrößenfraktionen eines Schlickwatts (HS 96/90).

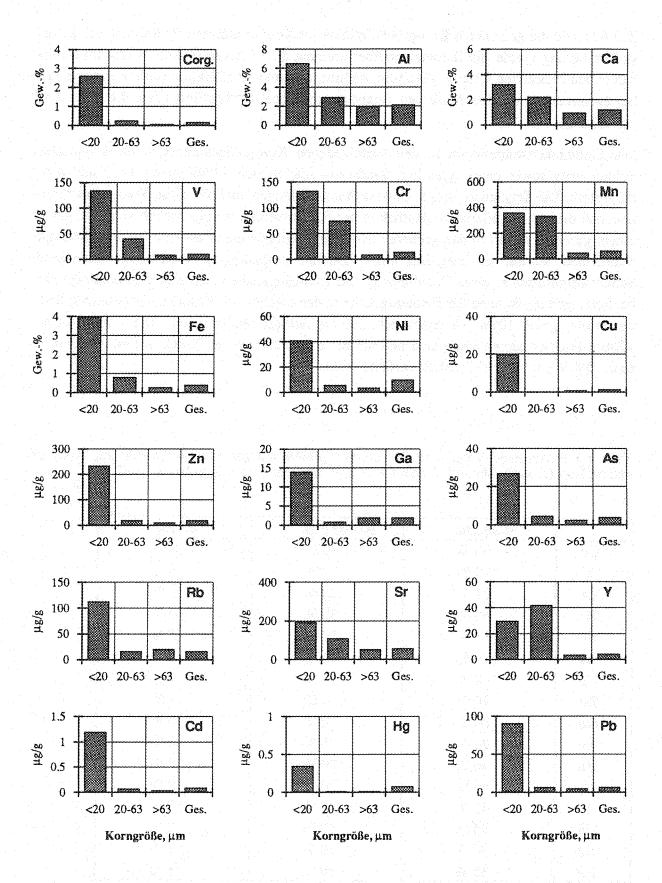


Abb. 4.4.2 Elementgehalte in den verschiedenen Korngrößenfraktionen eines Sandwatts (HW162/90).

Zur Auswahl der geeigneten Korngrößenfraktion für Routineanalysen im Rahmen der Schadstoffkartierung wurde die Schwermetallbestimmung an 12 ausgewählten Wattsedimentproben in den Fraktionen <20 μ m, 20-63 μ m, <63 μ m und <2000 μ m (unfraktionierte Probe) entsprechend des beschriebenen Analysenverfahrens durchgeführt (Tab. 9.6.1 bis 9.6.3 im Anhang).

Die Elementkonzentrationen in den verschiedenen Korngrößenfraktionen eines typischen Schlickwatts sowie eines typischen Sandwatts sind in den Abbildungen 4.4.1 und 4.4.2 dargestellt. Die Ergebnisse dieser Untersuchung bestätigen auch für diese Wattsedimentproben, daß die meisten Elemente deutlich in der Feinkornfraktion angereichert sind und nur zu einem geringen Anteil in den gröberen Sedimentfraktionen enthalten sind. In den Sandwattsedimenten kommt es aufgrund eines höheren grobkörnigen Anteil mit niedrigeren Schadstoffgehalten zu einer "Verdünnung" der Elementgehalte in der gesamten Sedimentprobe. Setzt man die Summe der Elementgehalte in den einzelnen Fraktionen der gesamten Sedimentprobe gleich 100%, so ergibt sich, daß die Schwermetalle zu ca. 70 bis 100% in der <20μm-Fraktion angereichert sind und nur bis zu ca. 20% in der 20-63μm-Fraktion und bis zu ca. 5% in der >63μm-Fraktion vorhanden sind.

Tab. 4.1 Prozentuale Verteilung der Elementgehalte auf die Fraktionen <20μm, 20-63μm und >63μm (s. auch Abb. 4.4.1 und 4.4.2). Der absolute Fehler liegt bei ca. 10%.

			The second secon
	< 20 μm	20 - 63 μm	> 63 µ m
Ca	60 %	30 %	10 %
V	75 %	20 %	5 %
Cr	75 %	20 %	5 %
Mn	60 %	30 %	10 %
Fe	85 %	10 %	5 %
Ni	80 %	15 %	5 %
Cu	100 %	1 %	1 %
Zn	90 %	5 %	5 %
Ga	80 %	10 %	10 %
As	90 %	5 %	5 %
Rb	70 %	20 %	10 %
Sr	60 %	30 %	10 %
Y	45 %	45 %	10 %
Cd	85 %	10 %	5 %
Hg	90 %	10 %	1 %
Pb	85 %	10 %	5 %

4.2.1.1 Vergleich von abgeschätzten und analysierten Elementgehalten in der <63 µm-Fraktion und im Gesamt-Sediment

Mit Hilfe der prozentualen Verteilung der Elementgehalte aus der Tabelle 4.1, der Korngrößenzusammensetzung und den analysierten Schwermetallgehalten (<20μm-Fraktion) wurde versucht, die Elementgehalte in der <63μm- und <2000μm-Fraktion abzuschätzen. Dies soll einen Vergleich mit Analysenergebnissen dieser Fraktionen aus anderen Untersuchungen ermöglichen. Zu diesem Zweck wurden die Schwermetallgehalte in den erwähnten 12 ausgewählten Wattsedimentproben sowohl in der <20μm-Fraktion als auch in den Fraktionen <63μm und <2000μm (unfraktionierte Probe) analysiert. Eine Abschätzung der Schwermetallgehalte im unfraktionierten Sediment wurde von Steffen [30] unter der Annahme durchgeführt, daß die Schwermetalle vollständig in der <20μm-Fraktion angereichert sind. Mit Ausnahme von Cadmium wurden gute Übereinstimmungen erreicht.

In den nachfolgenden Tabellen 4.3.1 und 4.3.2 werden exemplarisch an drei Proben unterschiedlichen Watttyps die abgeschätzten und analysierten Schwermetallgehalte der <63µmund <2000µm-Fraktion miteinander verglichen. Die Korngrößenzusammensetzung der drei Proben ist in der Tabelle 4.2 wiedergegeben. Die verwendeten Umrechnungsformeln zur Abschätzung der Schwermetallgehalte gibt die Abbildung 4.5 wieder.

1. Abschätzung der Elementgehalte in der <63um-Fraktion

$$EG_{<63\mu m} = EG_{<20\mu m} \cdot \frac{K_{<20\mu m}}{K_{<20\mu m} + K_{20-63\mu m}} + A_1 \cdot EG_{<20\mu m} \cdot \frac{K_{20-63\mu m}}{K_{<20\mu m} + K_{20-63\mu m}}$$

2. Abschätzung der Elementgehalte in der <2000µm-Fraktion

$$EG_{<2000\mu m} = EG_{<20\mu m} \cdot K_{<20\mu m} + A_1 \cdot EG_{<20\mu m} \cdot K_{20-63\mu m} + A_2 \cdot EG_{<20\mu m} \cdot K_{>63\mu m}$$

EG_{<20µm} = Elementgehalt in der <20µm-Fraktion (analysiert)

 $K_{<20\mu m}$ = Korngrößenanteil der <20 μ m-Fraktion in der Sedimentprobe

 $A_1 = PE_{20-63\mu m} / PE_{<20\mu m}$

 $A_2 = PE_{>63\mu m} / PE_{<20\mu m}$

 $PE_{<20\mu m}$ = Prozentualer Elementanteil in der <20 μ m-Fraktion

Abb. 4.5 Umrechnungsformeln zur Abschätzung der Elementgehalte in der $<63\mu m$ - und $<2000\mu m$ -Fraktion

Tab. 4.2 Korngrößenzusammensetzung von typischen Sedimentproben aus dem Deutschen Wattenmeer

Gew%	Sedimenttyp	<20µm	20-63μm	63-200μm	>200µm	>63µm
HS 96/90	Schlickwatt	47	35	18	0	18
HW 158/90	Mischwatt	12	14	73	1	74
T 255/89	Sandwatt	1	2	94	3	97

Tab. 4.3.1 Vergleich der analysierten und berechneten Elementgehalte von Cr, Fe, Ni, Cu, Zn, As, Cd, Hg und Pb in der Fraktion <63μm. Die Berechnung erfolgte auf der Basis der Analysenergebnisse der <20μm-Fraktion.

<63	μm		LICKW HS 96/90			SCHWA IW 158/9		SANDWATT T 255/89			
		analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*	
Cr	[µg/g]	70	92	32	78	66	15	74	67	9	
Fe	[%]	2.30	2.24	2	2.25	1.93	14	2.73	2.84	4	
Ni	[µg/g]	28	32	15	31	27	13	25	26	4	
Cu	$[\mu g/g]$	13	14	11	12	12	-	13	9	31	
Zn	$[\mu g/g]$	121	118	3	107	92	14	154	136	12	
As	$[\mu g/g]$	16	17	8	15	14	7	16	19	19	
Cd	$[\mu g/g]$	0.62	0.54	12	0.46	0.35	24	0.57	0.59	4	
Hg		0.28	0.24	16	0.18	0.17	6	0.29	0.26	10	
Pb	[μg/g]	39	44	12	36	32	11	41	30	27	

^{*} der relative Fehler bezieht sich auf die Abweichung zwischen den berechneten und den analysierten Elementgehalten

Tab. 4.3.2 Vergleich der analysierten und berechneten Elementgehalte von Cr, Fe, Ni, Cu, Zn, As, Cd, Hg und Pb in der Fraktion <2000μm (unfraktioniertes Sediment). Die Berechnung erfolgte auf der Basis der Analysenergebnisse der <20μm-Fraktion.

<2000μm			LICKW HS 96/90			SCHWA IW 158/9		SANDWATT T 255/89		
		analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*
Cr	[μg/g]	71	77	8	23.7	22.8	4	8.1	9.9	22
Fe	[%]	1.99	1.87	6	0.76	0.67	12	0.29	0.44	52
Ni	$[\mu g/g]$	23	27	17	9.0	9.3	4	3.0	4.0	33
Cu	$[\mu g/g]$	12	12	0	3.5	3.1	13	0.7	0.3	57
Zn	$[\mu g/g]$	104	98	6	34.6	31.9	8	11.3	21.6	91
As	[μg/g]	14	14	0	5.2	4.8	8	2.2	3.0	36
Cd	[μg/g]	0.43	0.45	5	0.13	0.12	6	0.03	0.09	204
Hg	$[\mu g/g]$	0.18	0.19	7	0.06	0.04	27	0.02	0.01	62
Pb	[μg/g]	33	36	9	11.4	11.1	3	3.3	4.6	39

^{*} der relative Fehler bezieht sich auf die Abweichung zwischen den berechneten und den analysierten Elementgehalte

Tab. 4.4.1 Vergleich der analysierten und berechneten Elementgehalte von Cr, Fe, Ni, Cu, Zn, As, Cd, Hg und Pb in der Fraktion <20μm. Die Berechnung erfolgte auf der Basis der Analysenergebnisse der <63μm-Fraktion.

<20	μm		LICKW HS 96/90			MISCHWATT SANDWATT HW 158/90 T 255/89					
		analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*	
Cr	[μg/g]	134	102	24	109	129	18	123	136	11	
Fe	[%]	3.59	3.68	3	3.68	4.28	16	6.27	6.04	4	
Ni	[μg/g]	49	43	12	48	55	15	53	50	6	
Cu	[µg/g]	25	23	8	25	26	4	25	34	36	
Zn	[μg/g]	197	202	3	187	217	16	328	372	13	
As	$[\mu g/g]$	29	27	7	28	30	7	46	39	15	
Cd	$[\mu g/g]$	0.87	0.99	14	0.67	0.88	31	1.30	1.26	3	
3	[μg/g]	0.38	0.45	18	0.32	0.34	6	0.59	0.65	10	
Pb	[μg/g]	70	62	11	61	69	13	66	91	38	

^{*} der relative Fehler bezieht sich auf die Abweichung zwischen den berechneten und den analysierten Elementgehalten

Tab. 4.4.2 Vergleich der analysierten und berechneten Elementgehalte von Cr, Fe, Ni, Cu, Zn, As, Cd, Hg und Pb in der Fraktion $<20\mu m$. Die Berechnung erfolgte auf der Basis der Analysenergebnisse der $<2000\mu m$ -Fraktion.

<20μm			LICKW HS 96/90		1 - 1 - 2 - 2 - 3 - 3	SCHWA IW 158/9		SANDWATT T 255/89		
		analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*	analysiert	berechnet	relFehler*
Cr	[µg/g]	134	124	7	109	113	4	123	103	16
Fe	[%]	3.59	3.83	7	3.7	4.2	14	6.27	4.13	34
Ni	[µg/g]	49	42	14	48	46	4	53	40	25
Cu	$[\mu g/g]$	25	26	4	25	29	16	25	64	156
Zn	$[\mu g/g]$	197	209	6	187	203	9	328	171	48
As	$[\mu g/g]$	29	28	3	28	30	7	46	33	28
Cd	$[\mu g/g]$	0.87	0.83	5	0.67	0.71	6	1.30	0.43	67
Hg		0.38	0.36	5	0.32	0.44	38	0.59	1.54	161
Pb	[μg/g]	70	64	9	61	63	3	66	47	29

^{*} der relative Fehler bezieht sich auf die Abweichung zwischen den berechneten und den analysierten Elementgehalten

Für die Schwermetallgehalte ergibt sich in der <63µm-Fraktion eine gute Übereinstimmung der abgeschätzten mit den analysierten Schwermetallgehalten. Der relative Fehler dieser Abschätzung liegt zwischen 0 und ca. 30% und ist fast unabhängig vom untersuchten Wattsedimenttyp. In der <2000µm-Fraktion ist die Übereinstimmung der abgeschätzten mit den analysierten Schwermetallgehalten stark von der Korngrößenverteilung des untersuchten Sediments abhängig. Insbesondere für Sedimente des Sandwatts ist die Übereinstimmung in der <2000µm-Fraktion nicht so gut wie für die <63µm-Fraktion. Eine Abschätzung der Schwermetallgehalte ist aber trotzdem im Bereich einer Größenordnung möglich. In den Abbildungen 4.6.1 bis 4.6.4 ist der Vergleich für alle 12 Sedimentproben graphisch wiedergegeben.

Ein Vergleich der analysierten mit den abgeschätzten Schwermetallgehalten in der Fraktion <20 μ m auf der Basis der Analysenergebnisse der <63 μ m-Fraktion bzw. der <2000 μ m-Fraktion wurde ebenfalls durchgeführt. Die Ergebnisse sind in den Tabellen 4.4.1 und 4.4.2 wiedergegeben und stimmen ebenfalls gut überein.

Die Untersuchungsergebnisse an den ausgewählten Sedimentproben zeigen, daß eine Abschätzung der Schwermetallgehalte in verschiedenen Sedimentfraktionen unter den oben beschriebenen Voraussetzungen möglich ist. Diese Abschätzung ersetzt jedoch niemals eine Elementanalyse und ist daher auch nicht für ein Monitoring geeignet. Sie bietet aber die Möglichkeit vorhandene Daten unterschiedlicher Untersuchungen miteinander zu vergleichen.

Mit Hilfe der Umrechnungsformeln aus der Abbildung 4.5 wurden die Schwermetallgehalte für alle Sedimentproben in der $<2000\mu m$ - und $<63\mu m$ -Fraktion abgeschätzt. Die entsprechenden Ergebnisse sind in den Abbildungen 9.1 und 9.2 im Anhang dargestellt.

Die <2000μm-Fraktion enthält aufgrund dieser Abschätzung fast einheitlich niedrige Schwermetallgehalte (Abb. 9.1.1 bis 9.1.3). Maxima treten immer bei Schlickwattproben und Mischwattproben mit einem hohen <63μm-Anteil auf. Da es sich bei den untersuchten Proben überwiegend um Sandwattsedimente handelt, ergeben die abgeschätzten Gehalte in der <2000μm-Fraktion keine wesentlichen Unterschiede in der Schwermetallbelastung. Die Ergebnisse spiegeln ausschließlich die Korngrößenzusammensetzung der Sedimente wieder.

In der <63 μ m-Fraktion sind die abgeschätzten Schwermetallgehalte ebenfalls in den Sandwattproben überwiegend niedriger als in der <20 μ m-Fraktion (Abb. 9.2.1 bis 9.2.3). In den Schlick- und Mischwattproben sind die Schwermetallgehalte in der <63 μ m-Fraktion oft mit denen in der <20 μ m-Fraktion vergleichbar.

4.2.1.2 Normierung auf Aluminium

Zur Überprüfung, ob dieser "Verdünnungseffekt" auch für die <20µm-Fraktion gilt, wurden die Analysenergebnisse der <20µm-Fraktion auf den Aluminiumgehalt in dieser Fraktion normiert. Der Aluminiumgehalt gilt näherungsweise als Maß für den Tonanteil der Sediment-probe [31]. Die normierten Analysenergebnisse sind in der Abbildung 9.3.1 bis 9.3.3 im Anhang wiedergegeben. Die Muster der normierten Werte und der Ergebnisse der <20µm-Fraktion stimmen sehr gut überein. Maxima und Minima der <20µm-Fraktion finden sich auch in den entsprechenden normierten Gehalten. Diese Ergebnisse bestätigen, daß die <20µm-Frak-

tion eine gute Basis für die Untersuchungen zur Schwermetallbelastung bildet. Für die Normierung der Elementgehalte in der Gesamtfraktion ist Aluminium jedoch nicht besonders geeignet, da es nicht überwiegend in der $<20\mu$ m-Fraktion angereichert ist (s. Abb.4.4.1 und 4.4.2).

4.1.2 Fazit

Als Ergebnis der Untersuchungen zur Wahl der geeigneten Korngrößenfraktion ist festzuhalten:

- die <20μm-Fraktion ist f
 ür die routinem
 äßige Multielementbestimmung in Wattsedimenten völlig ausreichend, da die meisten Elemente in dieser Feinkornfraktion angereichert sind;
- eine Abschätzung der Schwermetallgehalte in verschiedenen Sedimentfraktionen ist mit Hilfe von Umrechnungsformeln möglich und damit auch ein Vergleich von Analysendaten, die an unterschiedlichen Fraktionen erhalten wurden. Diese Methode ist jedoch als Grundlage für ein Sedimentmonitoring ungeeignet und ersetzt keine Analysenergebnisse.

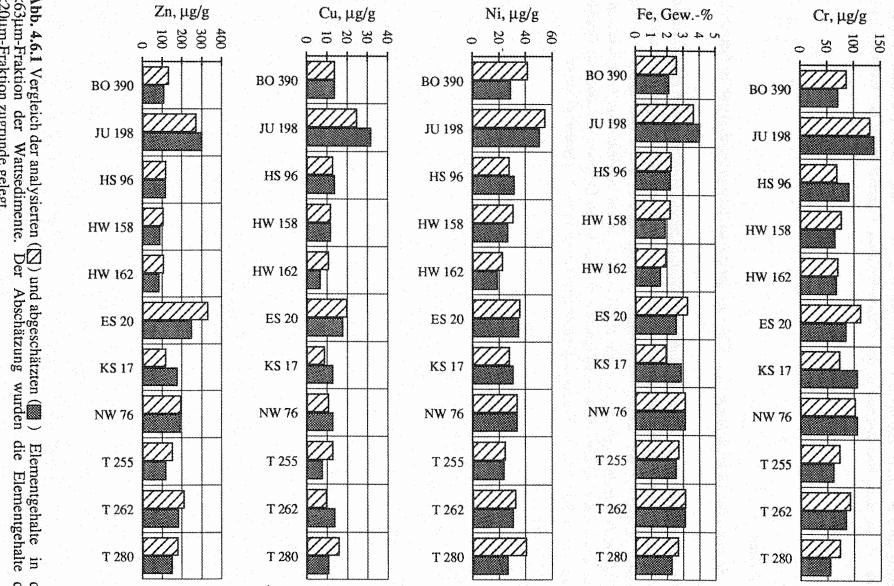


Abb. 4.6.1 Vergleich der analysierten (□) und abgeschätzten (□) <63µm-Fraktion der Wattsedimente. Der Abschätzung wurden <20µm-Fraktion zugrunde gelegt. der der

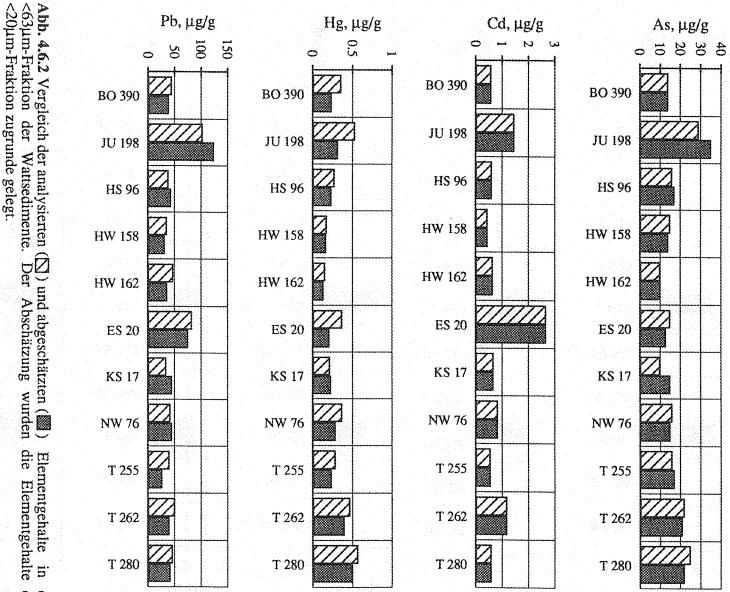


Abb. 4.6.2 Vergleich der analysierten (□) und abgeschätzten (■) <63μm-Fraktion der Wattsedimente. Der Abschätzung wurden <20μm-Fraktion zugrunde gelegt. der der

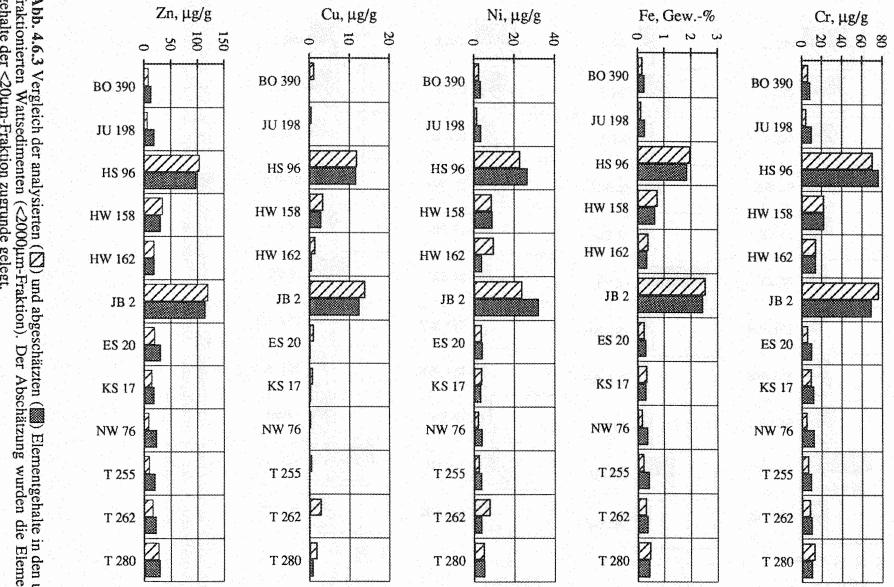


Abb. 4.6.3 Vergleich der analysierten (N) und abgeschätzten (N) Elementgehalte in den unfraktionierten Wattsedimenten (<2000µm-Fraktion). Der Abschätzung wurden die Elementgehalte der <20µm-Fraktion zugrunde gelegt.

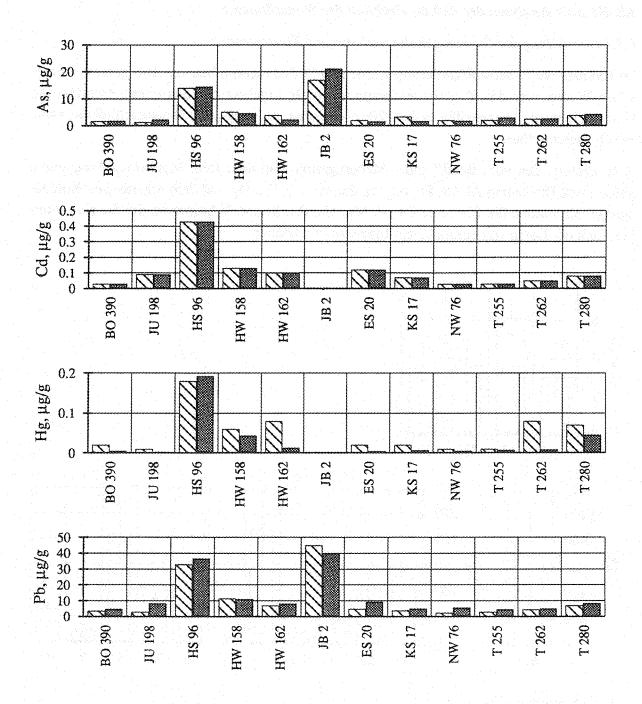


Abb. 4.6.4 Vergleich der analysierten (\bigcirc) und abgeschätzten (\bigcirc) Elementgehalte in den unfraktionierten Wattsedimenten (<2000µm-Fraktion). Der Abschätzung wurden die Elementgehalte der <20µm-Fraktion zugrunde gelegt.

4.3 Routine-Analysen der <20 \u03c0m-Fraktion der Wattsedimente

4.3.1 Darstellung der Elementgehalte nach Art und Konzentration

Im Rahmen der Schadstoffkartierung wurde an 113 Sedimentproben aus dem gesamten deutschen Wattenmeer die Multielementbestimmung als Ergebnis aus den oben beschriebenen Untersuchungen routinemäßig in der <20µm-Fraktion, nach Mikrowellenaufschluß mit konz. HNO₃, durchgeführt.

Zusätzlich zu den vom Bund/Länder-Meßprogramm und dem Joint Monitoring Programme geforderten Elementen Al, Cr, Fe, Ni, Cu, Zn, As, Pb, Cd, Hg und dem organischen Kohlenstoffgehalt wurden die Elemente Ca, V, Mn, Ga, Rb, Sr und Y bestimmt, die für eine Interpretation der Daten von zusätzlichem Interesse sein können.

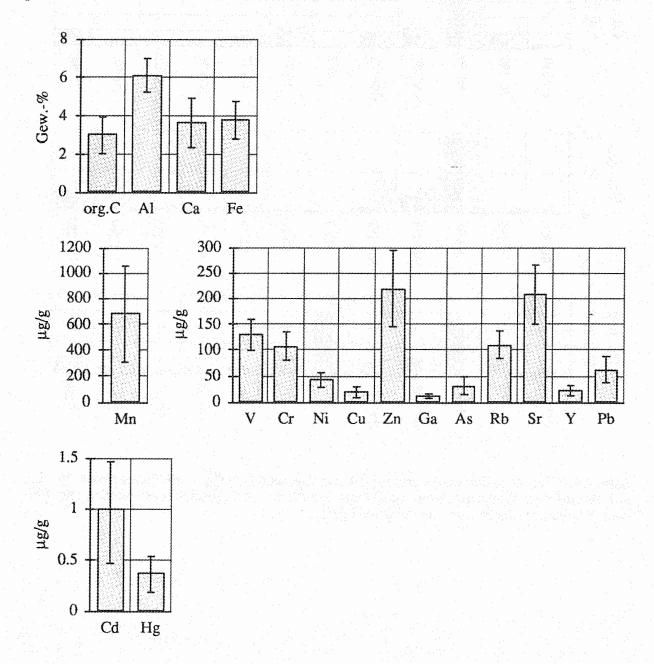
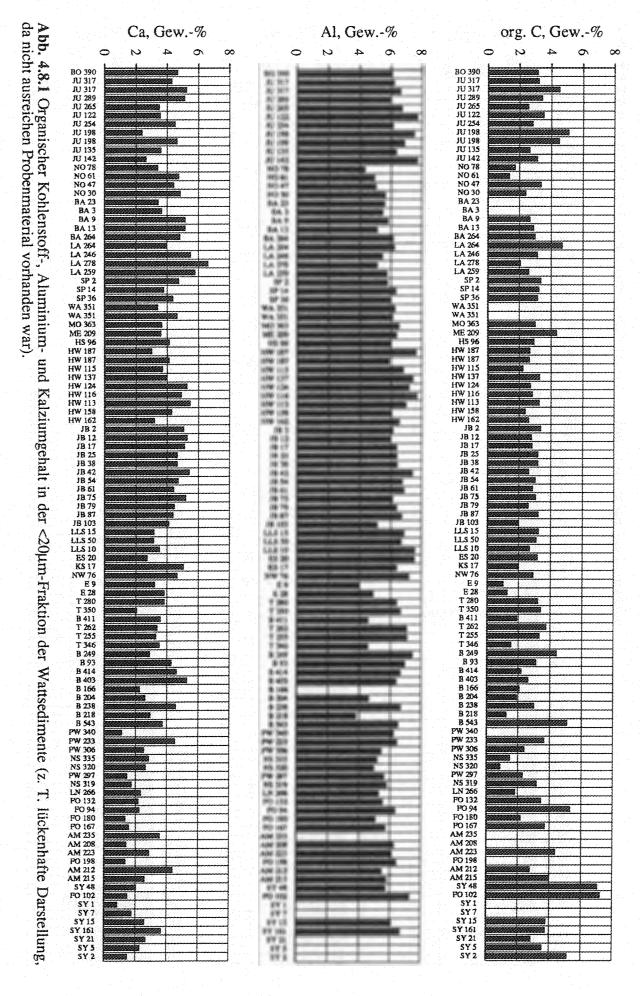


Abb. 4.7 Mittelwert und Standardabweichung der Elementgehalte in der <20μm-Fraktion der Wattsedimente (n=99; n=92 für Al; n=90 für org. C).

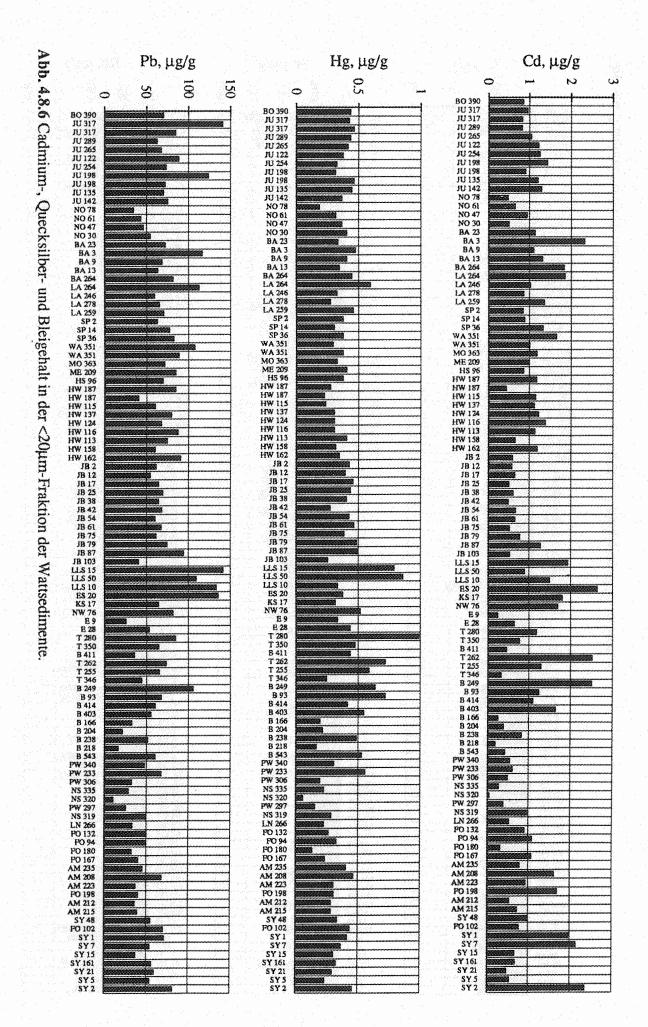
Die Abbildung 4.7 gibt das Verteilungsmuster der Elementgehalte in der <20μm-Fraktion der Wattsedimente wieder. Die Gehalte an organischem Kohlenstoff, Aluminium, Calcium und Eisen in der <20μm-Fraktion liegen im mg/g-Bereich. Die Cadmium- und Quecksilber-Gehalte variieren im ng/g-Bereich. Die übrigen Elementgehalte sind in der <20μm-Fraktion in der Größenordnung μg/g vorhanden. Die statistischen Parameter der Analysenergebnisse sind in der Tabelle 4.5 zusammengestellt.

Tab. 4.5 Minimal-, Maximal- und Mittelwert, Varianz und Standardabweichung der Elementgehalte der Wattsedimente (der <20μm-Fraktion); (n=99; n=92 für Al; n=90 für org. C).

	org. C [%]	Al [%]	Ca [%]	V [μg/g]	Cr [µg/g]	Mn [μg/g]	Fe [%]	Ni [µg/g]	Cu [µg/g]
Minimum	0.90	3.82	0.87	49	40	232	1.65	21	4
Maximum	7.23	7.73	6.64	214	169	3890	6.27	68	39
Mittelwert	3.07	6.15	3.70	131	108	684	3.81	46	. 21
Varianz	1.17	0.72	1.56	998	699	228761	0.99	83	49
Standard- abweichung	1.08	0.85	1.25	32	26	478	1.00	9	7
	Zn [μg/g]	Ga [μg/g]	As [μg/g]	Rb [μg/g]	Sr [µg/g]	Υ [μg/g]	$\begin{array}{c} Cd \\ [\mu g/g] \end{array}$	Hg [μg/g]	Pb [μg/g]
Minimum	•								
Minimum Maximum	[μg/g]	[µg/g]	[μg/g]	[μg/g]	[μg/g]	[µg/g]	[μg/g]	[μg/g]	[μg/g]
	[µg/g] 47	[μg/g] 5	[μg/g] 7	[μg/g] 44	[μg/g] 87	[µg/g]	[μg/g] 0.06	[μg/g] 0.06	[μg/g] 11
Maximum	[μg/g] 47 477	[μg/g] 5 21	[μg/g] 7 122	[μg/g] 44 152	[µg/g] 87 329	[μg/g] 13 42	[μg/g] 0.06 2.64	[μg/g] 0.06 0.99	[μg/g] 11 142


In den Abbildungen 4.8.1 bis 4.8.6 sind die Ergebnisse der Multielementanalytik in Form von Säulendiagrammen graphisch dargestellt. Die Darstellungen beginnen jeweils auf der linken Seite mit den Ergebnissen der Wattsedimente vor der niedersächsischen Küste (Borkum, Juist, Norderney, Baltrum, Langeoog, Spiekeroog, Wangerooge, Hoher Weg, Jadebusen und Wesermündung). Daran schließen sich die Ergebnisse der Wattsedimente aus der Elbemündung und vor der schleswig-holsteinischen Küste (Trischen, Büsum, Nordstrand, Pellworm, Amrum, Föhr und Sylt) an. Die dazugehörenden Zahlenwerte sind in der Tabelle 9.5 im Anhang aufgelistet. Die Lage der Probenahmeorte sind der Tabelle 9.3 und den Abbildungen 2.2.1 bis 2.2.7 zu entnehmen.

Die Ergebnisse der organischen Kohlenstoff- und Aluminium-Gehalte sind lückenhaft, da bei einigen Proben der <20µm-Anteil so gering war, daß er für eine Analyse nicht mehr ausreichte. Außerdem sind einige Probennummern doppelt vorhanden. Hier handelt es sich um Nachbeprobungen zur Überprüfung einiger Elementgehalte, die sich deutlich von denen der umliegenden Probenorte unterschieden.


Die graphischen Darstellungen verdeutlichen sehr gut, daß die Schwermetallgehalte von

Chrom, Nickel und Kupfer eine geringe Variationbreite im gesamten Wattenbereich aufweisen. Die Zink-, Arsen-, Cadmium-, Quecksilber- und Bleigehalte in der <20µm-Fraktion zeigen dagegen eine große Variationsbreite im gesamten Wattengebiet. Die Wattgebiete vor der niedersächsischen Küste haben durchschnittlich höhere Gehalte an Calcium, Chrom, Kupfer, Strontium, Cadmium und Blei in der <20µm-Fraktion als die vor der schleswig-holsteinischen Küste. Die Arsengehalte sind dagegen vor der niedersächsischen Küste vergleichsweise niedriger.

Zur weiteren Veranschaulichung der Analysenergebnisse sind die "Box-Plots" sehr gut geeignet, da mit ihrer Hilfe die Variationsbreite der Analysendaten übersichtlich wiedergegeben werden kann. Die Abbildungen 4.9.1 und 4.9.2 zeigen den Vergleich der Elementgehalte in den Wattsedimenten vor der niedersächsischen Küste mit denen vor der schleswig-holsteinischen Küste. Auf diese Ergebnisse wird noch bei der nachfolgenden Beschreibung der einzelnen Schwermetalle eingegangen.

- St -

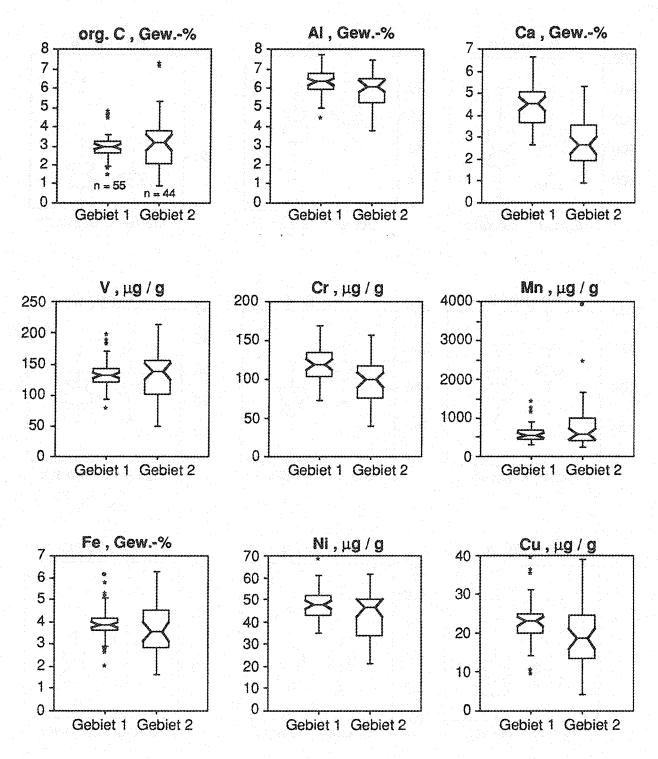


Abb. 4.9.1 Box-Plots der Elementgehalte in den Wattsedimenten (<20µm-Fraktion) aus dem Bereich vor der niedersächsischen Küste (Gebiet 1) und dem Bereich vor der schleswig-holsteinischen Küste (Gebiet 2). Die Untergrenze (unteres Quartil), die Mittellinie (Median) und die Obergrenze (oberes Quartil) der Box sind die Werte, unter denen jeweils 25%, 50% und 75% der Beobachtungen liegen. Der Median, der im Gegensatz zum arithmetischen Mittel unempfindlich gegenüber Extremwerten ist, gibt näherungsweise das jeweilige Niveau der Schadstoffbelastung wieder. Die Grenzen der sog. "Whisker" (linienfömige Verlängerungen der Box) geben den kleinsten bzw. größten analysierten Wert an, der innerhalb der Grenzen des 1,5-fachen Interquartilsabstands (Wert der Boxobergrenze minus Wert der Boxuntergrenze) liegt. Die Extremwerte sind als einzelne Punkte dargestellt, und zwar als Sterne, wenn sie außerhalb des 1,5-fachen Interquartilsabstands liegen und als Kreise, wenn sie außerhalb des 3-fachen Interquartilsabstands liegen. Die Einkerbungen entsprechen dem 95%igen Vertrauensbereich des Medians.

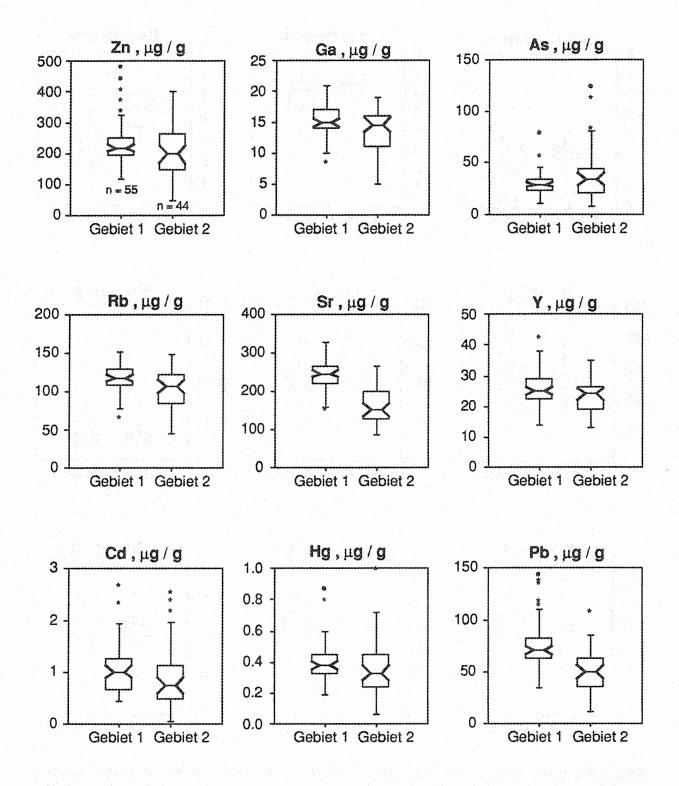


Abb. 4.9.2 Box-Plots der Elementgehalte in den Wattsedimenten (<20µm-Fraktion) aus dem Bereich vor der niedersächsischen Küste (Gebiet 1) und dem Bereich vor der schleswig-holsteinischen Küste (Gebiet 2). (Erläuterung der Box-Plots siehe Abbildung 4.9.1).

4.3.2 Feststellung von Belastungsschwerpunkten

Um die Belastung der Wattsedimente mit Schwermetallen beurteilen zu können, reichen die analysierten Gehalte allein nicht aus, da diese Elemente bereits von Natur je nach Herkunft der Sedimente in unterschiedlichen Konzentrationen in allen Sedimenten vorhanden sind. Zur Beurteilung der Schwermetallbelastung von Sedimenten existieren derzeit verschiedene Bewertungskriterien. Das am häufigsten verwendete Kriterium, das auch eine allgemeine Anerkennung gefunden hat, basiert auf dem Vergleich der analysierten Schwermetallgehalte mit den sogenannten "natürlichen Hintergrundwerten". Bei diesen "natürlichen Hintergrundwerten" handelt es sich um Spurenmetallgehalte in feinkörnigen, vorindustriellen Sedimenthorizonten, die noch nicht durch menschliches Einwirken mit Schwermetallen belastet sind [37].

Tab. 4.6 Natürliche Elementgehalte in verschiedenen Sedimenten (Angaben aus der Literatur: 1 [32]; 2, 3, 4 [33]; 5 [35]; 6 [36]; 7 [16]; 8 [16]; 9 [8, 9]; 10 [44, 44a]; 11 [12].

	vagai Š	1	2	3	4	5	6	7	8	9	10	11
		Tonschiefer	Tonschiefer	Kont. Kruste	Ozean. Kruste	Flußsediment	Elbe-Sediment	Nordsee (BLMP)	Nordsee	Wart	Watt	Salzwiesen
Cr	$[\mu g/g]$	90	90	88	317	59	70	80	60	n.a.	84	75
Fe	[%]	4.72	4.8	4.2	7	n.a.	n.a.	n.a.	3	n.a.	n.a.	3.9
Ni	$[\mu g/g]$	68	68	45	144	21	n.a.	30	30	n.a.	37	44
Cu	[μg/g]	45	45	35	81	16	25	20	20	20	22	15-22
Zn	[μg/g]	95	95	69	78	94	100	100	100	90	103	91
As	[μg/g]	13	10	3	n.a.	10	4	10	n.a.	n.a.	13	27
Cd	[μg/g]	0.3	0.13	0.1	0.13	0.4	0.4	0.3	0.3	0.15	0.5	0.1
Hg	[μg/g]	0.4	0.45	0.02	n.a.	0.2	0.3	0.2	0.2	n.a.	0.07	0.04
Pb	[μg/g]	20	22	15	0.9	30	25	25	20	15	37	21

Förstner & Reineck haben bereits 1974 anhand der Sedimentablagerungen in vertikalen Sedimentprofilen aus der Deutschen Bucht nachgewiesen, daß die Schwermetallgehalte in den letzten Jahrzehnten erheblich zugenommen haben [34]. In der Tabelle 4.6 sind die "natürlichen" Elementgehalte verschiedener Sedimente aufgelistet, wie sie in der Literatur zu finden sind.

Zur Bewertung der Sedimentbelastung wird in Deutschland oftmals der Geo-Index nach Müller [38] angewendet. Er berechnet sich aus den natürlichen Hintergrundwerten und den analysierten Gehalten in der <2µm-Fraktion.

Als ein Ansatz für ein weiteres Bewertungskriterium für belastete Sedimente ist der Normentwurf aus den Niederlanden anzusehen [39, 40]. Er bildet die Grundlage für die Beurteilung von kontaminierten Hafenschlämmen hinsichtlich einer möglichen Einbringung in andere Gebiete. Der Normentwurf schlägt vor, die analysierten Schwermetallgehalte auf ein Standardsediment mit einem Tonanteil (<2μm-Fraktion) von 24% und einem Gehalt an organischer Substanz von 10% (Schlick) umzugerechnen. Die auf diese Weise ermittelten Schwermetallgehalte werden dann mit den vorher festgelagten Zielwerten, Standardwerten und Grenzwerten verglichen. Diese Umrechnung geht allerdings nicht bei Sedimenten mit einem <2μm-Anteil unter 5% und einem organischen Anteil kleiner als 2% [39]. Hier kommt es wegen der Analysenungenauigkeiten zu falschen Ergebnissen.

Zur Beurteilung des Belastungzustands der Wattsedimente ist dieses Bewertungskriterium daher nicht geeignet, da es sich bei dieser Untersuchung überwiegend um sandige Sedimente handelt, deren <2µm-Anteil oft unter 1% liegt. Problematisch ist dieser Bewertungsansatz aber auch deshalb, weil durch die Vorgabe von Zielwerten, d.h. Werte unterhalb derer die Belastungskonzentrationen keinerlei Auswirkungen auf die Umwelt haben, ausschließlich das "Belastungsprinzip" verfolgt wird und weniger das von der Bundesrepublik Deutschland vertretene "Vorsorgeprinzip".

In dieser Arbeit werden zur Darstellung der Schwermetallbelastung der Wattsedimente die analysierten Schwermetallgehalte auf sogenannte "Basiswerte" bezogen, die der "natürlichen" Hintergrundsbelastung der Sedimente aus der Tabelle 4.6 angelehnt sind. Die Wattsedimente wurden aufgrund ihres jeweiligen Schwermetallgehalts in 5 Gruppen eingeteilt (Tab. 4.7). Für die Schwermetalle Cr, Fe, Ni, Cu, Zn, As, Pb, Cd und Hg wurden auf der Grundlage dieser Klassifizierung Übersichtskarten erstellt, die einen Überblick über die Schwermetallgehalte in der <20µm-Fraktion der deutschen Wattsedimente liefern (Abb. 4.10.1 bis 4.10.9).

Tab. 4.7 Anhand der natürlichen Hintergrundswerte aus der Tabelle 4.6 wurden für die Abbildungen 4.10.1 bis 4.10.9 folgende Basiswerte für die Beurteilung der Schwermetallbelastung zugrundegelegt.

		blau Basis-Wert	grün	gelb	orange	rot
Cr	[µg/g]	≤80				
Fe	[%]	≤4	1 bis 2 -	2 bis 3 -	3 bis 4 -	> 4 -
Ni	[µg/g]	≤40		personal distribution		
Cu	[µg/g]	≤ 20	dalah Madalah	eriya, enjahir,	rijayewai w	
Zn	[µg/g]	≤ 100	facher	facher	facher	facher
As	[µg/g]	≤20				
Cd	[µg/g]	≤ 0.3				
Hg	[µg/g]	≤ 0.15	Basis-Wert	Basis-Wert	Basis-Wert	Basis-Wert
Pb	[µg/g]	≤30		THE RESERVE OF STREET		

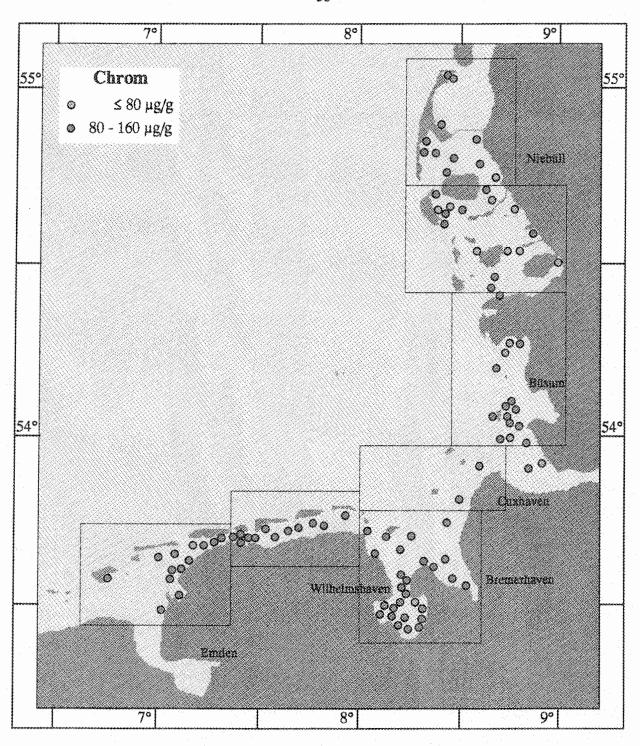
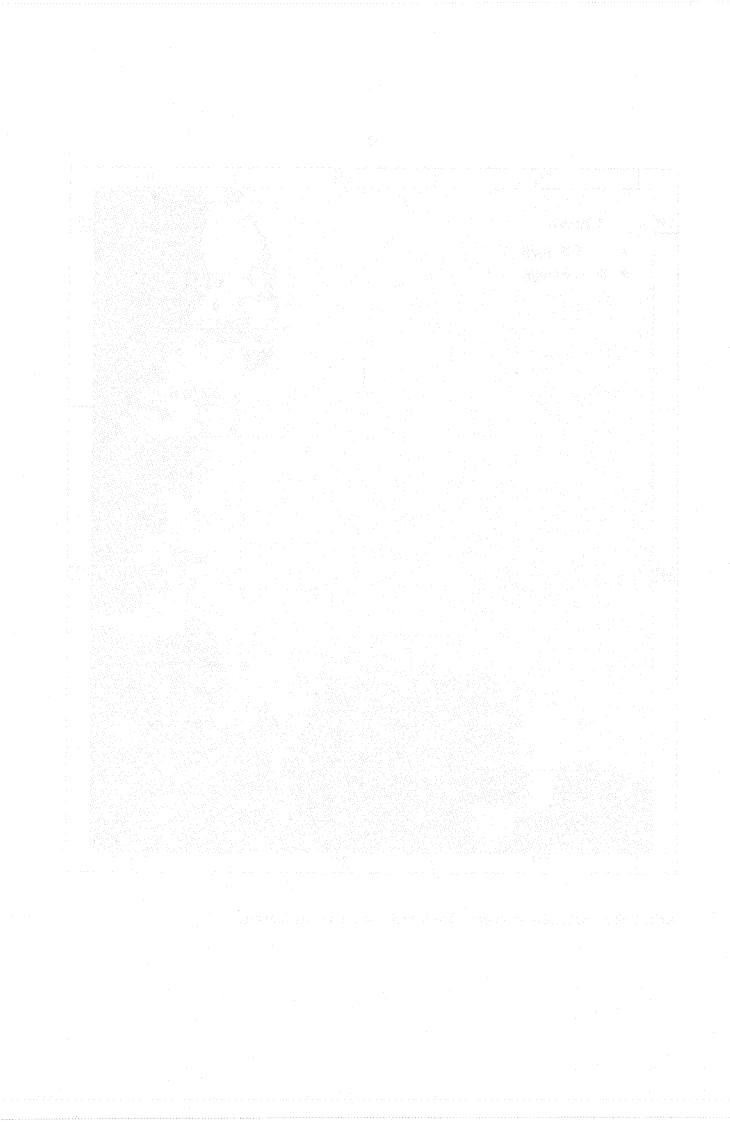



Abb. 4.10.1 Chromgehalte in der <20µm-Fraktion der Wattsedimente.

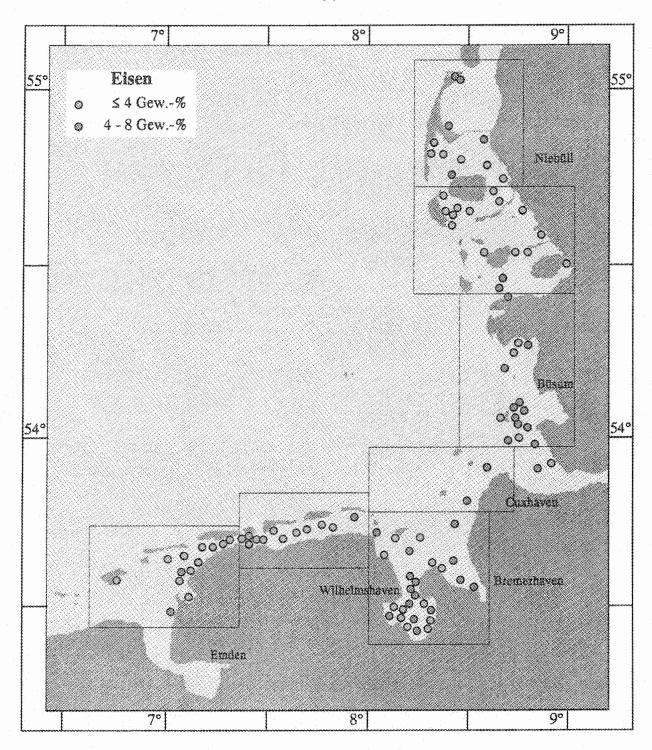
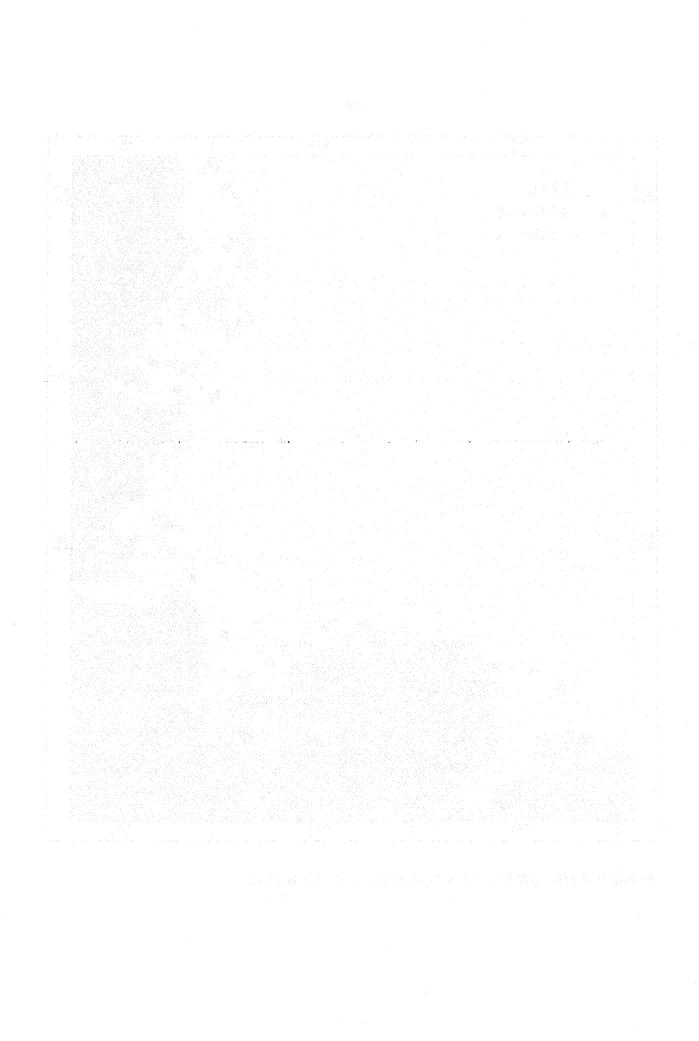



Abb. 4.10.2 Eisengehalte in der <20 µm-Fraktion der Wattsedimente.

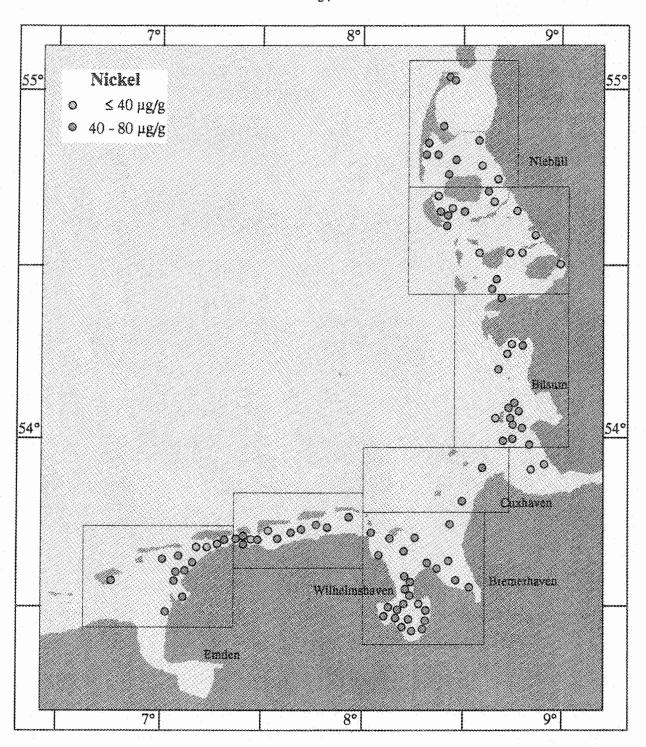


Abb. 4.10.3 Nickelgehalte in der <20µm-Fraktion der Wattsedimente.

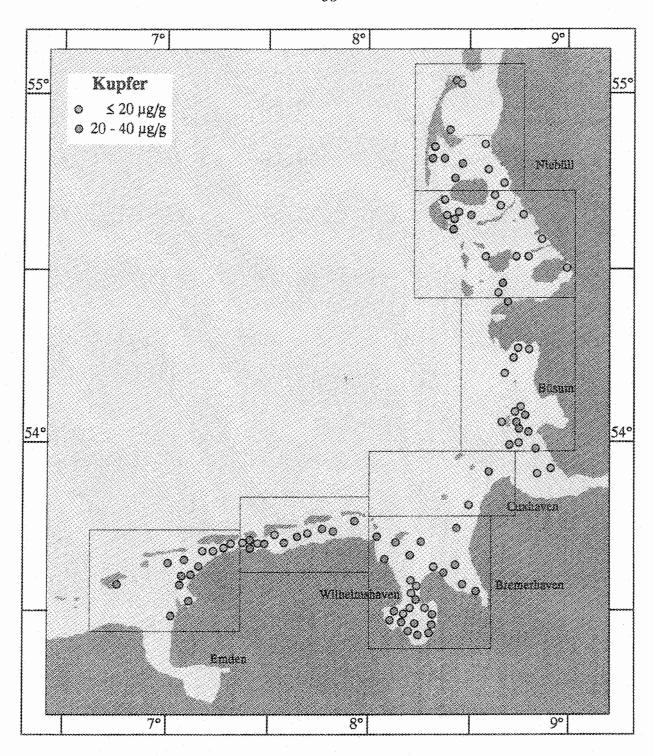


Abb. 4.10.4 Kupfergehalte in der <20µm-Fraktion der Wattsedimente.

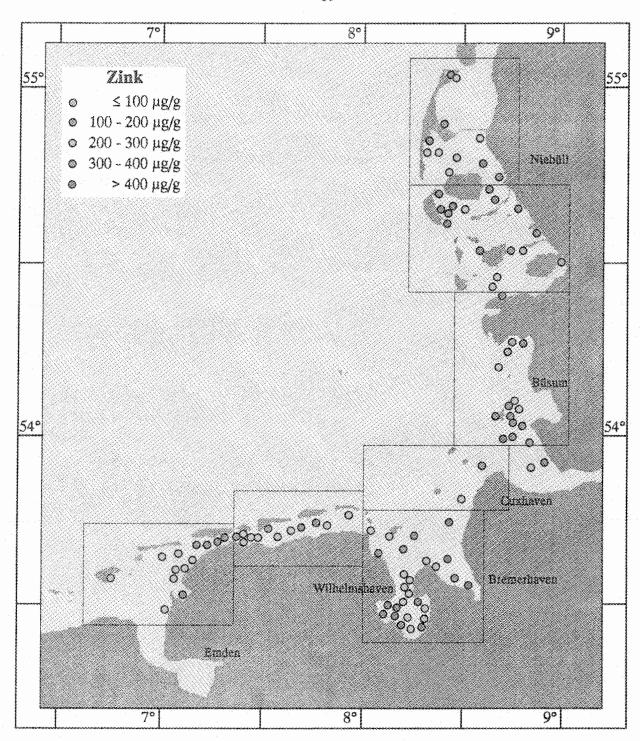
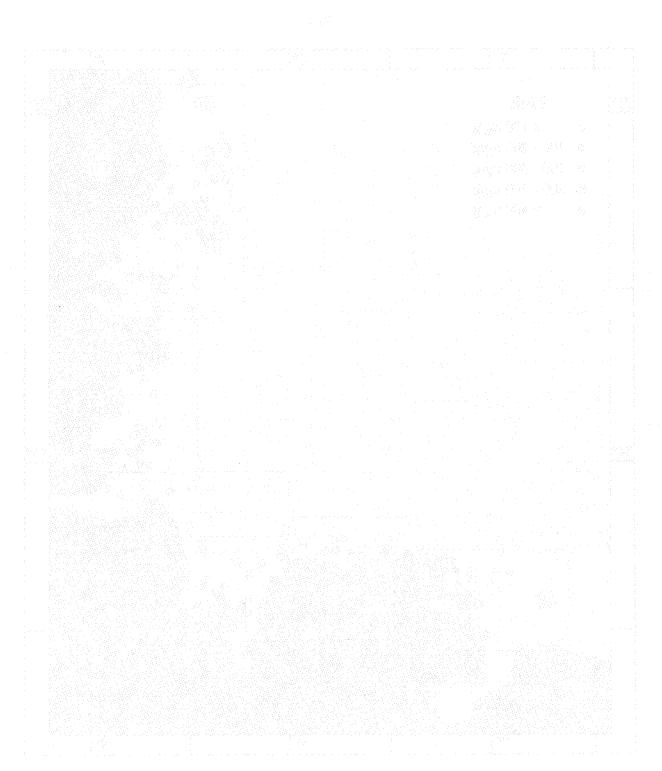



Abb. 4.10.5 Zinkgehalte in der <20µm-Fraktion der Wattsedimente.

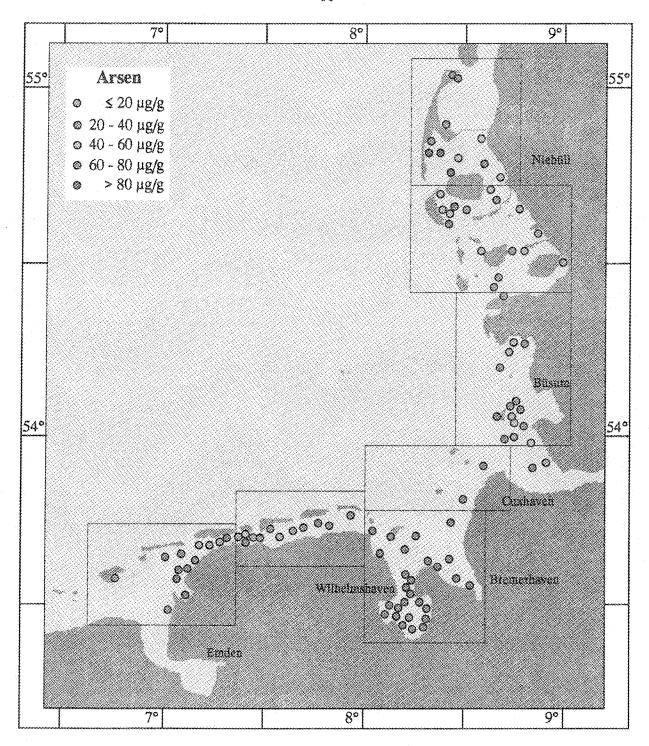


Abb. 4.10.6 Arsengehalte in der <20µm-Fraktion der Wattsedimente.

化环烷基化铁铁 医二甲二烷 医二甲甲氏试验 化磺胺二苯酚磺基酚 计自由连续控制

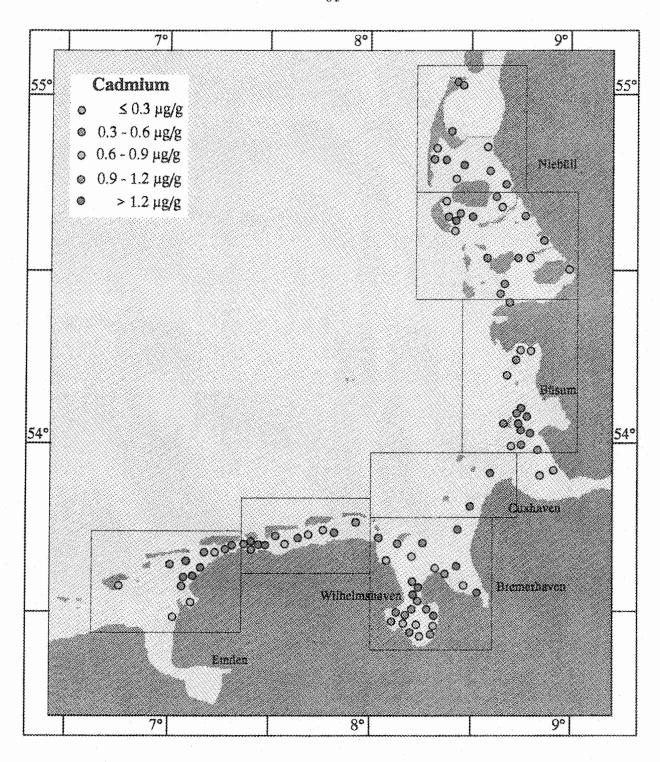


Abb. 4.10.7 Cadmiumgehalte in der <20µm-Fraktion der Wattsedimente.

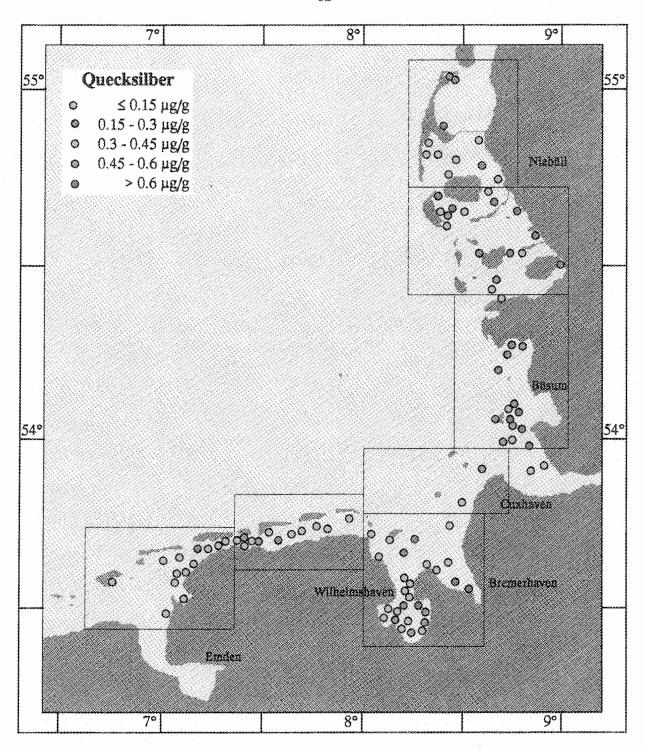
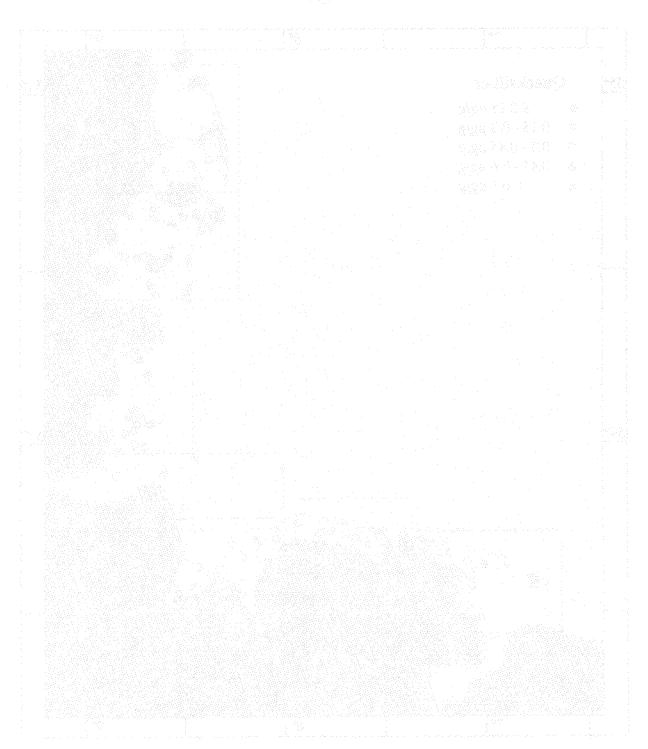



Abb. 4.10.8 Quecksilbergehalte in der <20µm-Fraktion der Wattsedimente.

and the state of the professional factors for the same at a transport for about the first field of

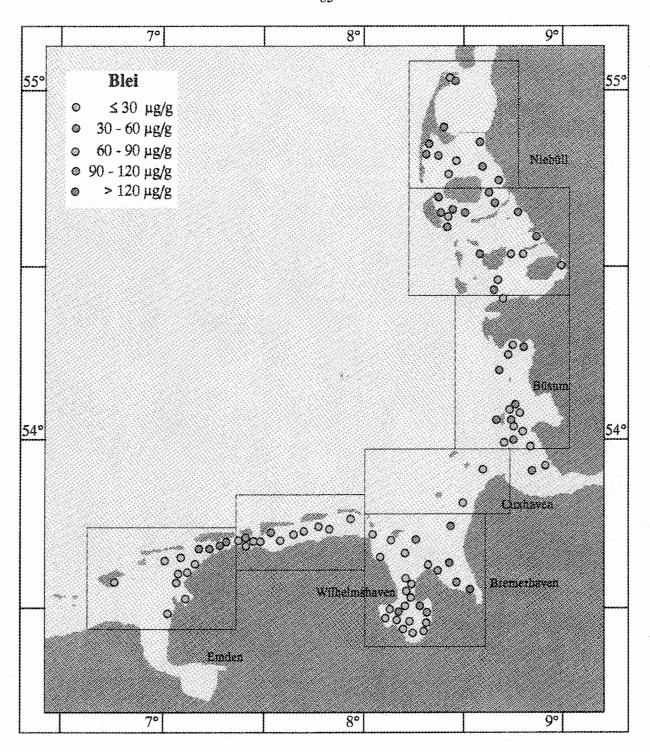
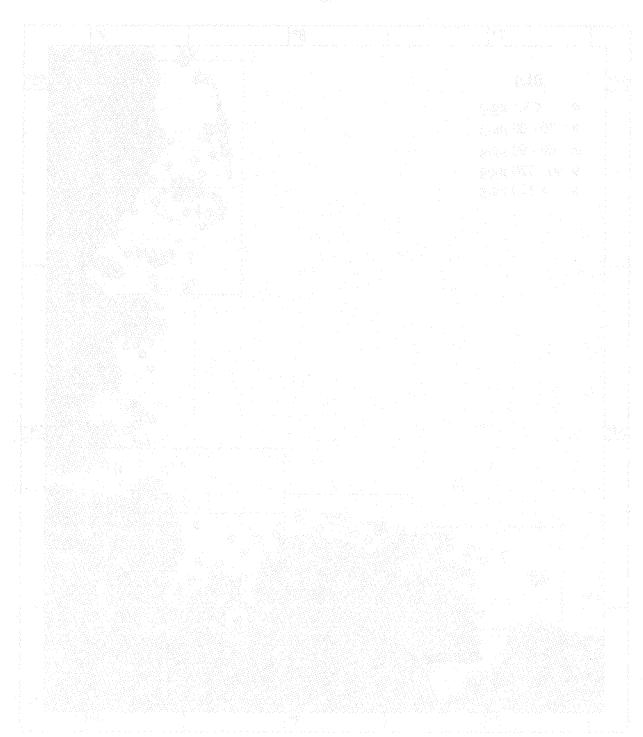



Abb. 4.10.9 Bleigehalte in der $<20\mu m$ -Fraktion der Wattsedimente.

그런 사람들은 교회에 들어난 그 한 회사를 하는 어머니 그렇는 나는 말을 가는데 되게 된 것이다. 그렇게 다

Alle bisher genannten Kriterien zur Beurteilung der Schwermetallbelastung sind jedoch nicht geeignet, eine ökotoxikologische Bewertung durchzuführen, da eine Gewichtung der Metalle bezüglich ihrer biotoxikologischen Wirkung fehlt [7]. Dies gilt auch für die Klassifizierung der Wattsedimente in dieser Untersuchung.

Im folgenden sind die Ergebnisse der Schwermetallanalytik an der <20µm-Fraktion nach Elementen geordnet zusammengefaßt:

Chrom

- die Chromgehalte variieren zwischen 40 und 170 μg/g;
- die Variation der Chromgehalte ist in den Wattsedimenten vor der niedersächsischen Küste und vor der schleswig-holsteinischen Küste vergleichbar;
- der Median der Chromgehalte ist im Gebiet vor der schleswig-holsteinischen Küste niedriger als im Gebiet vor der niedersächsischen Küste;
- die <20µm-Fraktion der Wattsedimente enthält verglichen mit den "natürlichen" Hintergrundwerten geringe bis mittlere Gehalte an Chrom.

Eisen

- die Eisengehalte variieren zwischen 1,6 und 6,3 Gew.-%;
- die Variation der Eisengehalte ist in den Wattsedimenten vor der niedersächsischen Küste und vor der schleswig-holsteinischen Küste vergleichbar. Die unterschiedliche Höhe der Boxen (Abb. 4.9.1) weist jedoch darauf hin, daß die mittleren 50% der Eisen-Verteilung in den Wattsedimenten vor der niedersächsischen Küste wesentlich homogener sind als vor der schleswig-holsteinischen Küste;
- die Mediane der Eisengehalte in den Gebieten vor der schleswig-holsteinischen und der niedersächsischen Küste sind vergleichbar;
- die <20µm-Fraktion der Wattsedimente enthält mittlere Eisengehalte.

Nickel

- die Nickelgehalte variieren zwischen 20 und 70 μg/g;
- die Nickelgehalte der Wattsedimente vor der niedersächsischen Küste haben eine etwas geringere Variationsbreite als in den Wattsedimenten vor der schleswig-holsteinischen Küste;
- die Mediane der Nickelgehalte in den Gebieten vor der schleswig-holsteinischen und der niedersächsischen Küste sind vergleichbar;
- die <20µm-Fraktion der Wattsedimente ist verglichen mit den "natürlichen" Hintergrundwerten gering bis mittelmäßig mit Nickel belastet.

Kupfer

- die Kupfergehalte variieren zwischen 4 und 40 μg/g;
- die Variation der Kupfergehalte ist in den Wattsedimenten vor der niedersächsischen Küste und vor der schleswig-holsteinischen Küste vergleichbar. Die unterschiedliche Höhe der Boxen (Abb. 4.9.1) weist jedoch darauf hin, daß die mittleren 50% der Kupfer-Verteilung in den Wattsedimenten vor der niedersächsischen Küste homogener sind als vor der

- schleswig-holsteinischen Küste;
- der Median der Kupfergehalte ist im Gebiet vor der schleswig-holsteinischen Küste niedriger als im Gebiet vor der niedersächsischen Küste;
- die <20µm-Fraktion der Wattsedimente ist gering mit Kupfer belastet.

Zink

- die Zinkgehalte variieren zwischen 45 und 480 μg/g;
- die Variation der Zinkgehalte ist in den Wattsedimenten vor der niedersächsischen Küste und vor der schleswig-holsteinischen Küste vergleichbar. Die unterschiedliche Höhe der Boxen (Abb. 4.9.2) weist darauf hin, daß die mittleren 50% der Kupfer-Verteilung in den Wattsedimenten vor der niedersächsischen Küste etwas homogener sind als vor der schleswig-holsteinischen Küste;
- die Mediane der Zinkgehalte in den Gebieten vor der schleswig-holsteinischen und der niedersächsischen Küste sind vergleichbar;
- die <20µm-Fraktion der Wattsedimente ist mittelmäßig bis stark mit Zink belastet. Erhöhte Gehalte wurden im Bereich der Weser- und Elbemündung, sowie lokal vor Baltrum, Amrum und Sylt beobachtet.

Arsen

- die Arsengehalte variieren zwischen 10 und 130 μg/g;
- die Variation der Arsengehalte ist in den Wattsedimenten vor der niedersächsischen Küste geringer vor der schleswig-holsteinischen Küste. Die unterschiedliche Höhe der Boxen (Abb. 4.9.2) weist darauf hin, daß die mittleren 50% der Kupfer-Verteilung in den Wattsedimenten vor der niedersächsischen Küste homogener sind als vor der schleswigholsteinischen Küste;
- die Mediane der Arsengehalte in den Gebieten vor der schleswig-holsteinischen und der niedersächsischen Küste sind vergleichbar mit einer Tendenz zu einem höheren Medianwert im Gebiet vor der schleswig-holsteinischen Küste;
- die <20μm-Fraktion der Wattsedimente ist mittelmäßig bis stark mit Arsen belastet. Erhöhte Gehalte wurden im Bereich der Elbemündung sowie im Bereich von Amrum und Sylt beobachtet.

Cadmium

- die Cadmiumgehalte variieren zwischen 0,05 und 2,65 μg/g;
- die Variation der Cadmiumgehalte ist in den Wattsedimenten vor der niedersächsischen Küste und vor der schleswig-holsteinischen Küste vergleichbar;
- der Median der Cadmiumgehalte ist im Gebiet vor der schleswig-holsteinischen Küste niedriger als im Gebiet vor der niedersächsischen Küste;
- die <20μm-Fraktion der Wattsedimente ist sehr stark mit Cadmium belastet. Erhöhte Gehalte wurden entlang der niedersächsischen Küste, im Hohen Weg, in der Weser- und Elbemündung sowie im Bereich von Amrum und Sylt beobachtet.

Quecksilber

- die Quecksilbergehalte variieren zwischen 0,05 und 1,00 μg/g;
- die Variation der Quecksilbergehalte ist in den Wattsedimenten vor der niedersächsischen Küste etwas geringer als vor der schleswig-holsteinischen Küste;
- die Mediane der Quecksilbergehalte in den Gebieten vor der schleswig-holsteinischen und der niedersächsischen Küste sind vergleichbar;
- die <20µm-Fraktion der Wattsedimente ist stark mit Quecksilber belastet. Erhöhte Gehalte wurden entlang der niedersächsischen Küste, im Hohen Weg, in der Weser- und Elbemündung sowie im Bereich von Amrum und Sylt beobachtet.

Blei

- die Bleigehalte variieren zwischen 10 und 140 μg/g;
- die Variation der Bleigehalte ist in den Wattsedimenten vor der niedersächsischen Küste und vor der schleswig-holsteinischen Küste vergleichbar;
- der Median der Bleigehalte ist im Gebiet vor der schleswig-holsteinischen Küste niedriger als im Gebiet vor der niedersächsischen Küste;
- die <20µm-Fraktion der Wattsedimente ist mittelmäßig bis stark mit Blei belastet. Erhöhte Bleigehalte treten fast im gesamten Bereich vor der niedersächsischen Küste sowie im Bereich der Weser- und Elbemündung auf.

4.4 Vergleich der Analysenergebnisse

Die Schwermetallgehalte in der <20μm-Fraktion der Wattsedimente stimmen sehr gut mit den Ergebnissen von Schwedhelm & Irion überein [8], die 1981 die <2μm-Fraktion von Nordsee-Wattsedimenten auf die Gehalte von Fe, Mn, Ni, Cu, Zn, Cd und Pb untersucht hatten. Die Cadmiumgehalte der Schadstoffkartierung sind jedoch in der Weser- und Elbemündung sowie in den Wattgebieten vor Sylt fast doppelt so hoch. Die gute Übereinstimmung der Schwermetallgehalte in der <2μm- und der <20μm-Fraktion macht deutlich, daß eine weitere Korngrößenfraktionierung der Sedimente nicht erforderlich ist.

Der Vergleich der Schwermetallgehalte der Schadstoffkartierung mit denen aus dem Bund/Länder-Meßprogramm ist in Abbildung 4.11.1 und 4.11.2 dargestellt. Die Ergebnisse des BLMP wurden über die Jahre 1984 bis 1989 gemittelt, soweit aus diesen Jahren Analysen vorlagen (Tab. 4.8 und Tab. 9.7 im Anhang). Die Lage der Probenahmeorte ist der Tabelle 9.3 des Anhangs zu entnehmen. Die für diesen Vergleich ausgewählten Probenorte aus der Schadstoffkartierung lagen in der Nähe der BLMP-Stationen. Die Analysenergebnisse stimmen unter Berücksichtigung der unterschiedlichen Probenahmeorte im allgemeinen gut überein.

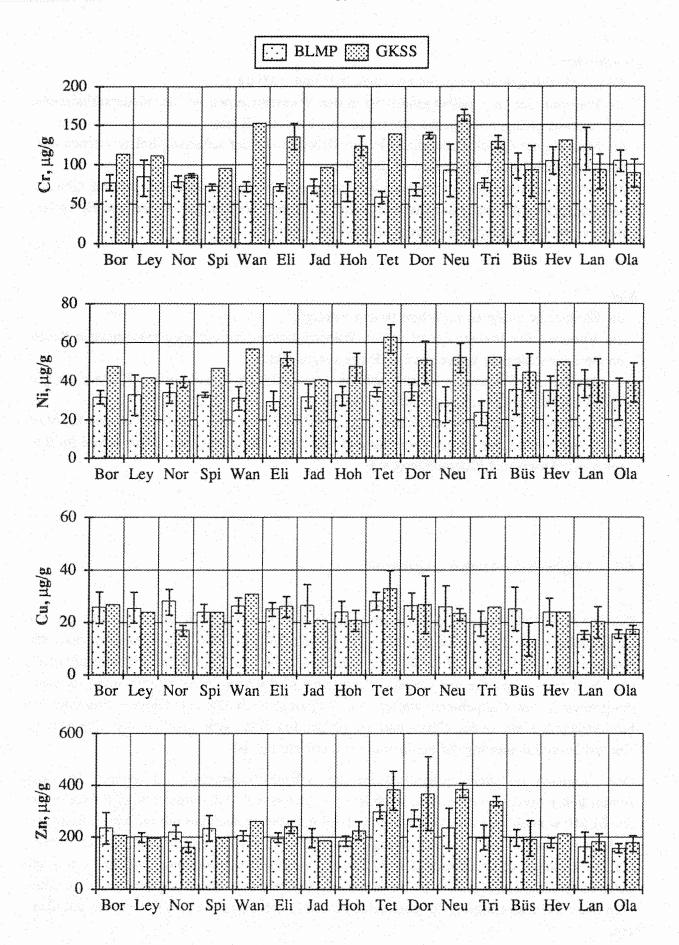


Abb. 4.11.1 Vergleich der Analysenergebnisse des BLMP und der Schadstoffkartierung in der <20μm-Fraktion der Wattsedimente

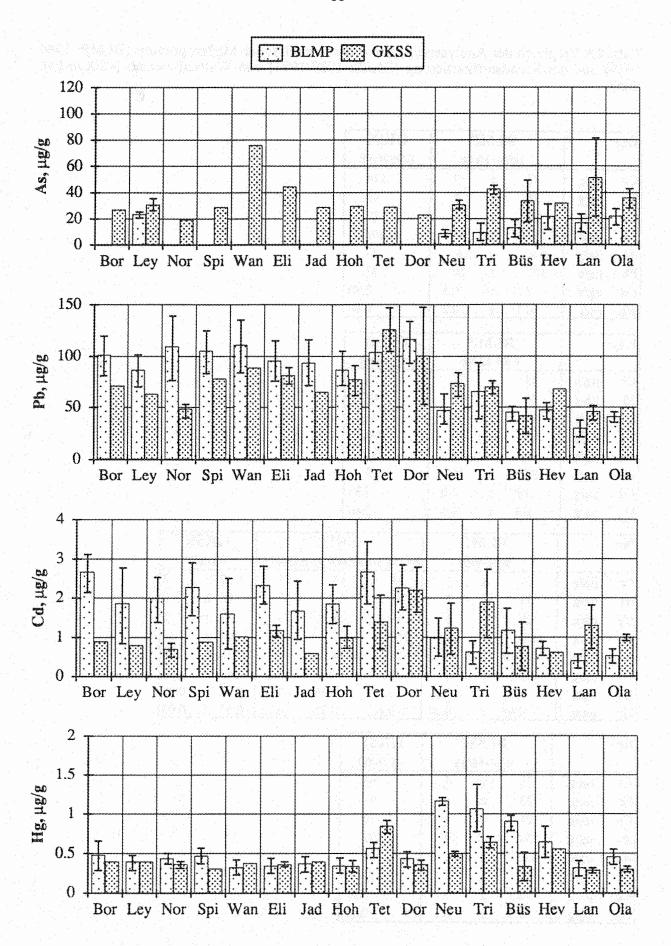


Abb. 4.11.2 Vergleich der Analysenergebnisse des BLMP und der Schadstoffkartierung in der <20µm-Fraktion der Wattsedimente

Tab. 4.8 Vergleich der Analysenergebnisse des Bund/Länder-Meßprogramms (BLMP: 1984-1989) und der Schadstoffkartierung (GKSS: 1989-1991) von Wattsedimenten (<20μm-Faktion).

Bor			8LM 86-1		GKSS BO390/90
Cr	μg/g	77	±	9	114
Ni	μg/g	32	±	4	48
Cu	μg/g	26	±	6	27
Zn	μg/g	237	±	63	209
As	μg/g	n.a.	±	n.a.	27
Pb	μg/g	101	±	20	71
Cd	μ g /g	2.7	\pm	0.5	0.90
Hg	μg/g	0.5	±	0.2	0.40

Ley			LM 4-10		GKSS JU289/90
Cr	μg/g	85	±	24	112
Ni	μg/g	33	±	11	42
Cu	μg/g	26	±	8	24
Zn	μg/g	203	±	18	196
As	μg/g	24	±	4	31
Pb	μg/g	87	±	16	63
Cd	μg/g	1.9	±	1.0	0.80
Hg	μg/g	0.4	±	0.1	0.40

Nor			LM 34-9/		NO30/90	GKSS) NO47/90	GKSS Mittel		
Cr	μg/g	79	±	7	89	89	83	87	± 3
Ni	μg/g	35	±	5	43	38	39	40 :	± 3
Cu	μg/g	28	±	5	19	18	15	17	± 2
Zn	μg/g	221	±	29	163	177	144	161 :	± 17
As	μg/g	n.a.	±	n.a.	25	18	15	19	± 5
Pb	μg/g	110	±	32	55	47	44	49 :	± 6
Cd	μg/g	2	±	0.6	0.51	0.95	0.66	0.71	± 0.22
Hg	μg/g	0.44	±	0.07	0.41	0.37	0.32	0.37	± 0.05

Spi		1	3LM 86-10	7	GKSS SP14/90
Cr	μg/g	73	±	4	96
Ni	μg/g	33	±	2	47
Cu	μg/g	24	±	3	24
Zn	μg/g	234	±	49	199
As	μg/g	n.a.	±	n.a.	29
Pb	μg/g	105	±	21	78
Cd	μg/g	2.3	±	0.7	0.89
Hg	μg/g	0.5	±	0,1	0.31

Tab. 4.8 (Forts.) Vergleich der Analysenergebnisse des Bund/Länder-Meßprogramms (BLMP: 1984-1989) und der Schadstoffkartierung (GKSS: 1989-1991) von Wattsedimenten (<20μm-Faktion).

Eli		T	BLN	IP		Γ	***********		GKS	<u>S</u>	**********	7	G	KSS	******
			9/84-9	/86	13.8	S	P36/9	0 N	10363/	90	WA35	1/91	N	1ittel	
Cr	μg/g	72	±	5		8)8.5	120	14, 7	134		153	3	136	±	17
Ni	μg/g	30	±	5			48		51		5	7 %	52	± 1	5
Cu	μg/g	25	±	2			23		25		3		26	±	4
Zn	μg/g	196	±	15			227		235		263	3	242	± - 1,500	19
As	μg/g	n.a.	±	n.a.			29		29		76	5	45	±	27
Pb	μg/g	96	±	20			83		72		89)	81	± - 10,000	9
Cd	μg/g	2.3	±	0.	5		1	34	1.	19		.02	1.18	± (0.16
Hg	μg/g	0.3	±	0.	1		0.3	38	0.	33	().38	0.36	± (0.03

Jad			BLM 84-10	GKSS JB38/89	
Cr	μg/g	73	±	9	97
Ni	μg/g	32	±	6	41
Cu	μg/g	27	±	8	21
Zn	μg/g	200	* ±	42	187
As	μg/g	п.а.	±	n.a.	29
Pb	μg/g	94	±	24	65
Cd	μg/g	1.7	±	0.8	0.60
Hg	μg/g	0.4	<u>±</u>	0.1	0.40

Hoh	1	BLMP 9/84-10/88			HV	GKSS HW158/89 HW162/89 HW137/89						GKSS Mittel		
Cr	μg/g	67	±	12	Τ	109		133	1	31	124	±	13	
Ni	μg/g	33	±	5		48		41		55	48	±	7	
Cu	$\mu g/g$	24	±	4	1	25		20		18	21	±	4	
Zn	μg/g	187	±	19		187		235	2	54	225	± '	35	
As	$\mu g/g$	n.a.	±	n.a.		28		27		34	30	± .	4	
Pb	μg/g	87	±	17		61		91		80	77	±	15	
Cd	μg/g	1.9	土	0.5		0.67		1.20) "	1.10	0.99	± .	0.28	
Hg	μg/g	0.3	±	0.1		0.30		0.32	2	0.40	0.34	± ,	0.05	

Wai	1		BL1 9/84-8/	GKSS WA351/91	
Cr	μg/g	73	±	6	153
Ni	μg/g	32	±	8	57
Cu	$\mu g/g$	27	±	3	31
Zn	$\mu g/g$	208	±	17	263
As	$\mu g/g$	n.a.	±	n.a.	76
Pb	μg/g	111	± +	27	89
Cd	$\mu g/g$	1.6	±	0.9	1.02
Hg	μg/g	0.3	· //±	0.1	0.38

Tab. 4.8 (Forts.) Vergleich der Analysenergebnisse des Bund/Länder-Meßprogramms (BLMP: 1984-1989) und der Schadstoffkartierung (GKSS: 1989-1991) von Wattsedimenten (<20µm-Faktion).

Tet		BLMP 9/86-10/88		LLS15/9	GKSS 0 LLS50/	an	GKSS Mittel		
Cr	μg/g	59 ±	7	140	139		140 ±		
Ni	μg/g	35 ±	2	68	58		63 ±	7	
Cu	μg/g	28 ±	3	39	27		33 ±	8	
Zn	μg/g	300 ± :	23	438	331		385 ±	76	
As	μg/g	n.a. ± n	a.	36	22		29 ±	10	
Pb	μg/g	104 ±	11	142	110		126 ±	23	
Cd	μg/g	2.7 ±	0.8	1.90	0.9	0 1	.40 ±	0.71	
Hg	μg/g	0.6 ±	0.1	0.80	0.9	0 0	.85 ±	0.07	

Dor	******		BLM	P	G	KSS	GKS	S		
		9/	84-10	/88	ES20/90	KS17/90	Mittel			
Cr	μg/g	69	±	9	135	141	138 ±	4		
Ni	μg/g	35	±	5	59	43	51 ±	11		
Cu	μg/g	27	±	5	35	19	27 ±	11		
Zn	μg/g	271	+	31	477	260	369 ±	153		
As	μg/g	n.a.	±	n.a.	24	22	23 ±	1		
Pb	μg/g	117	±	22	136	65	101 ±	50		
Cd	μg/g	2.3	±	0.6	2.60	1.81	2.21 ±	0.56		
Hg	μg/g	0.4	±	0.1	0.40	0.32	0.36 ±	0.06		

Neu			BLMI 86-12/			GKS T350/91	GKSS Mittel				
Cr	μg/g	94	±	35	T	158	1	69	164	±	8
Ni	μg/g	29	±	10		47		58	53	±	8
Cu	$\mu g/g$	26	±	9		22		25	24	±	2
Zn	μg/g	237	±.	79		403	3	68	386	±	25
As	μg/g	9	±.	3		34		28	31	±	4
Pb	μg/g	47	±	15		65		82	74	±	12
Cd	$\mu g/g$	1.0	± 1	0.5		0.78		1.70	1.24	<u>+</u>	0.65
Hg	μg/g	1.2	±	0.5		0.48	14.5 14.59	0.52	0.50	<u>±</u>	0.03

Tri			BLMI	>	GK	SS	GKSS Mittel		
		1	0/86-9/	89	T262/90	T255/90			
Cr	μg/g	77	±	6	136	123	130 ±	9	
Ni	μg/g	24	±.	6	52	53	53 ±	1	
Cu	μg/g	19	±	5	27	25	26 ±	1	
Zn	μg/g	198	±	51	350	328	339 ±	16	
As	μg/g	10	±	7	40	46	43 ±	4	
Pb	μg/g	66	±	29	74	66	70 ±	6	
Cd	μg/g	0.6	±	0.3	2.50	1.30	1.90 ±	0.85	
Hg	μg/g	1.1	±	0.3	0.59	0.70	0.65 ±	0.08	

Tab. 4.8 (Forts.) Vergleich der Analysenergebnisse des Bund/Länder-Meßprogramms (BLMP: 1984-1989) und der Schadstoffkartierung (GKSS: 1989-1991) von Wattsedimenten (<20μm-Faktion).

Büs BL			BLMI	GKSS					GKSS		
stronaroù di Mar		1/84-8/88			B403/90	B161/91	3161/91 B166/91	B204/91	Mittel		
Cr	μg/g	100		16	106	121	100	47	94	±	32
Ni	μg/g	36	±	13	45	52	51	31	45	±	10
Cu	μg/g	25	±	9	19	18	9	9	14	±	6
Zn	μg/g	198		30	262	209	202	98	193	±	69
As	μg/g	13	±	7	40	54	31	10	34	±	18
Pb	μg/g	45	±	7	56	57	33	22	42	±	17
Cd	μg/g	1.2	±	0.6	1.70	0.69	0.27	0.40	0.77	±	0.65
Hg	μg/g	0.9	±	0.5	0.60	0.33	0.20	0.22	0.34	±	0.18

Hev		A CONTRACT	BLMI /84-8/8		GKSS PW233/91
Cr	μg/g	105	∵ _	17	131
Ni	μg/g	36	±	7	50
Cu	μg/g	24	- *	5	24
Zn	μg/g	178	±	16	215
As	μg/g	22	±	10	32
Pb	μg/g	47	±	9	68
Cd	μg/g	0.7	±	0.2	0.62
Hg	μg/g	0.7	±	0.2	0.56

Lan		Fantas in a	BLMI 5/84-8/8		FO132/91	GKSS Mittel			
Cr	μg/g	122	±	28	77	FO198/91 111	94		24
Ni	μg/g	39	± .	8	33	48	41	±	11
Cu	μg/g	16	±	2	16	25	21	±	6
Zn	μg/g	164	±	62	161	208	185	±	33
As	μg/g	17	±	7	30	73	52	±	30
Pb	μg/g	30	±	9	51	41	46	±	7
Cd	μg/g	0.4	±	0.2	0.92	1.70	1.31	±	0.55
Hg	μg/g	0.3	±	0.1	0.27	0.31	0.29	±	0.03

Ola		BLMP 2/84-8/87			GI FO132/91	GKSS Mittel			
Cr	μg/g	105	±	14	77	FO94/91 102	90	±	18
Ni	μg/g	31	±	11	33	47	40	±	10
Cu	μg/g	16	±	2	16	19	18	± '	2
Zn	μg/g	158	±	16	161	199	180	± .	27
As	μg/g	22	V0,(±)2.	6	30	42	36	±	8
Pb	μg/g	41	±	5	51	49	50	±	1
Cd	μg/g	0.5	±	0.2	0.92	1.10	1.01	±	0.13
Hg	μg/g	0.5	±	0.1	0.27	0.33	0.30	±	0.04

5. Chlorkohlenwasserstoffe

Für eine Schadstoffkartierung ist die Untersuchung der Sedimente auf organische Problemstoffe eine unverzichtbare Aufgabe. Eine besondere Bedeutung haben dabei die schwerflüchtigen Chlorkohlenwasserstoffe, die sich bervorzugt in lipidhaltigem Gewebe von Organismen bzw. an Schwebeteilchen ablagern [41, 42]. Die Chlorkohlenwasserstoffe sind akkumulierbar, persistent sowie toxisch und stellen aufgrund dessen eine Gefahr für die Nahrungsnetze dar.

Insektizide haben als Quelle Produktionsanlagen bzw. Anwendungsorte. Somit ergibt sich ein großer Bereich als Quellort. PCB sind aus Quellen der Produktion und Anwendung, also vorzugsweise aus Städten zu erwarten. Die Einträge in das Wattenmeer erfolgen somit über die Flüsse. Unberücksichtigt bleiben hierbei allerdings der Transport und die Verteilung über die Atmosphäre. Dieser Weg führt zu einer gleichmäßigen Verteilung über das Meer.

In Anlehnung an das Bund/Länder-Meßprogramm und das Joint Monitoring Programme wurden in dieser Arbeit die folgenden Chlorkohlenwasserstoffe bestimmt: Pentachlorbenzol (QCB) und Hexachlorbenzol (HCB), α- und γ-Hexachlorcyclohexan (HCH), Octachlorstyrol (OCS) p,p'-DDE, p,p'-DDD, p,p'-DDT und die polychlorierten Biphenyle (PCB) Nr. 28+31, 52, 101, 118, 138, 153+132+105 und 180.

5.1 Systematische Untersuchungen zum Analysenverfahren

Um eine geeignete Aufarbeitungsmethode auszuwählen, wurde ein Probesediment mit vier verschiedenen Verfahren auf den Gehalt an CKW untersucht. Eingesetzt wurden Kaltextraktion mit Ultraschall, Kaltextraktion in Kieselgelsäulen, Soxlet-Extraktion und Wasserdampfdestillations-Extraktion. Die gereinigten Extrakte wurden mit Gaschromatographie getrennt und mit einem Elektroneneinfangdetektor (ECD) bestimmt. Der Vergleich der Wiederfindungsraten für die einzelnen Methoden zeigte für die Wasserdampfdestillations-Extraktion (WDDE) die besten Wiederfindungsraten. Für HCB, QCB und die HCH-Isomere sind die Wiederfindungsraten für alle vier Methoden innerhalb der Fehlergrenzen vergleichbar. Für DDT und die Metaboliten sind die Wiederfindungsraten der Wasserdampfdestillations-Extraktionsmethode etwa 50% und für die PCB etwa 100% größer. Tabelle 5.1 zeigt für alle untersuchten Substanzen die bestimmten Konzentrationen mittels der verschiedenen Aufarbeitungsmethoden. Bei der simultanen Wasserdampfdestillations-Extraktion wird die Extraktionsfähigkeit des organischen Lösungsmittels mit der Wasserdampfdestillation kombiniert. Durch das Heraustreiben der CKW aus der Sedimentmatrix und der daran anschließenden Extraktion erfolgt eine Abtrennung von weniger wasserdampfflüchtigen Störsubstanzen von den CKW. Aufgrund dieser Untersuchungen wurde die unten beschriebene Routinemethode ausgewählt. Zu Beginn der Routine-Analytik wurde das Verfahren der Wasserdampfdestillations-Extraktion an die geringen Chlorkohlenwasserstoffgehalte der Wattsedimente angepaßt. Zur Ermittlung der optimalen Bedingungen zur Probenvorbereitung und Probenaufarbeitung wurden Probenmenge, Wasserqualität, Reinigungsmethode für Wasser und Cleanupmethode

Probenahme

Oberflächensedimente (0 - 10 cm Tiefe)

2 Kerne in elektropolierten Edelstahlstechern (ca. 500 g)

Umfüllen in Aluminium - Schalen

Probenlagerung

bei -18 °C im Tiefkühlschrank

Aufarbeitung

Bestimmung von Trockenmasse und organischem Kohlenstoff in der Gesamtfraktion Einwaage von ca. 50 g Feuchtgewicht der Gesamtfraktion simultane Wasserdampfdestillations - Extraktionsmethode Extraktion mit Isooctan

Reinigung des Extraktes mit Cu, anschließend mit konz. H₂SO₄

Analytik des Extraktes

Gaschromatographische Trennung/ ECD - Detektion

Zu bestimmende Komponenten:

HCB, QCB, α -HCH, γ-HCH, OCS, p,p'-DDE, p,p'-DDD, p,p'-DDT, PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, PCB 180

Ergebnis in μg/kg Trockenmasse und μg/kg Corg Bestimmungsgrenze: 0,05 μg/kg Trockenmasse

Abb. 5.1 Schematische Darstellung des Analysenverfahrens zur Bestimmung von chlorierten Kohlenwasserstoffen in Wattsedimenten.

Tab. 5.1 Gegenüberstellung der nach vier verschiedenen Aufarbeitungsmethoden ermittelten Chlorkohlenwasserstoffgehalte eines Sediments (μg/kg TM +/- 10%).

CKW	WDDE	Soxhlet	US-Behandlung	Kieselgelsäule
QCB	14	13	10	11
HCB	197	196	192	217
α-НСН	, y - 776. (07 3 €	3	2.0	2
у-НСН	6	5. Opt. 5 .	6.40 busyless 1.2	2
OCS	19	10	10	10
DDE	10	7	5	6
DDD	40	27	21	23
DDT	6	3	6	3
PCB 28	8	5	6	3
PCB 52	6	4	3	4
PCB 101	9	5	7.	6
PCB 138	15	8	6	6
PCB 153	16	9	6	6
PCB 180	7	4	$oldsymbol{2}$	4

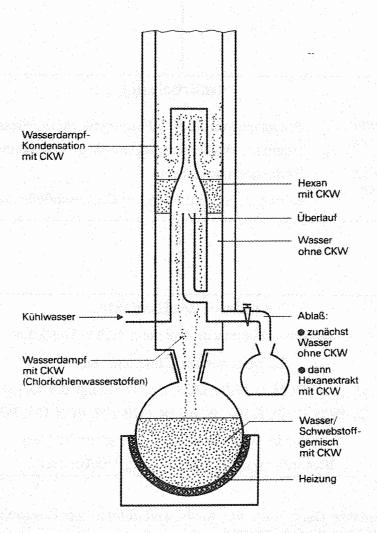


Abb. 5.2 Chlorkohlenwasserstoff-Anreicherung aus den Wattsedimenten durch Wasserdampfdestillations-Extraktionsmethode (WDDE).

eingehend getestet. Geringe Blindwerte und hohe Wiederfindungsrate wurden angestrebt.

Die Untersuchungen wurden nicht an nach Korngrößen fraktionierten Sedimenten vorgenommen, da zum einen die für eine Analyse zur Verfügung stehende Probenmenge nicht ausreichte und zum anderen eine Kontamination der Proben bei der Fraktionierung nicht ausgeschlossen werden konnte. Die Bestimmung der Chlorkohlenwasserstoffe wurden deshalb in der Gesamtfraktion durchgeführt und anschließend auf den Gehalt an organischem Kohlenstoff (TOC) normiert.

5.1.1 Analysenmethode

5.1.1.1 Probenvorbereitung

Die Probenahme der Oberflächensedimente erfolgte mit zylindrischen elektropolierten Edelstahlstechern (Durchmesser 5,5 cm). Das entnommene Sediment wurde in Aluminiumschalen umgefüllt und bis zur weiteren Aufarbeitung bei -18 °C zwecks Konservierung tiefgefroren gelagert. Zur weiteren Bearbeitung wurde die Probe aufgetaut und ohne Auftrennung in Korngrößenfraktionen als feuchtes Sediment verwendet (Abb. 5.1).

Für die quantitative Analytik der zu bestimmenden schwerflüchtigen Chlorkohlenwasserstoffe in der Gesamtfraktion wurde im ersten Schritt der Anreicherung eine simultane Wasserdampfdestillations-Extraktionsmethode (WDDE) eingesetzt [45, 46] (Abb. 5.2). Dazu gelangte ca. 50 g des gut durchmischten Sediments, aufgeschlämmt mit 1 l über RP 18 gereinigtem Wasser, in die Wasserdampfdestillations- und Extraktionsapparatur. Das gebildete Wasserdampfgemisch wurde kontinuierlich, nach der Kondensation, mit Isooctan extrahiert (9 h). Parallel wurde eine Trockenmassenbestimmung des feuchten Sediments (Trocknung bei 105 °C) durchgeführt.

Die Trockenmasse (TM) wurde des weiteren auf den TOC (total organic carbon)-Gehalt analysiert.

Der eingeengte Isooctanextrakt wurde mit Cu-Pulver versetzt, um störende Schwefelmengen zu entfernen. Nach einem anschließenden Cleanup mit konzentrierter Schwefelsäure wurde der Extrakt auf ein definiertes Volumen eingeengt und gaschromatographisch untersucht.

5.1.2 Analysenprinzipien

Bei der gaschromatographischen Analyse wurden zwei Säulen mit chemisch gebundenen Phasen (DB-5 und DB-1701 der Firma J & W) unterschiedlicher Polarität verwendet. Der Einsatz einer zweiten Säule diente zur Absicherung des auf der ersten Säule gewonnenen Analysenergebnisses. Diese Erweiterung der Analytik wurde routinemäßig seit Januar 1991 (vgl. Zwischenbericht) durchgeführt.

Die Probenaufgabe erfolgte im Splitless-Betrieb, die Detektion wurde mit einem Elektroneneinfangdetektor (ECD) durchgeführt. Als Gaschromatograph stand ein Gerät der Firma Hewlett Packard (HP 5890) zur Verfügung. Die Auswertung erfolgte mit Hilfe des Chromatographie-Datenverarbeitungsprogramms Nelson 2600.

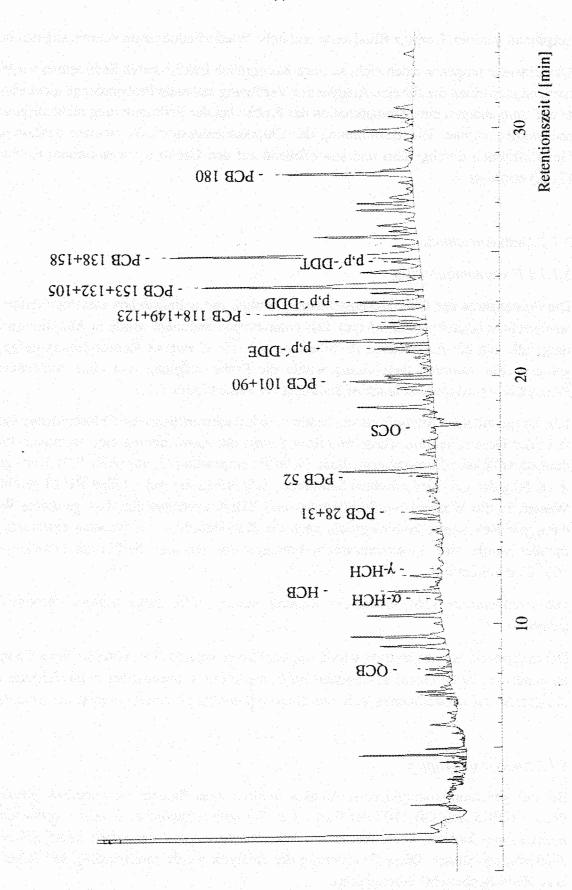


Abb. 5.3 Chromatogramm eines Wattsedimentextraktes von der Station LLS 50; Bestimmung der CKW-Konzentration mittels Gaschromatograpie (30 m Kapillarsäule DB5, Temperaturprogramm 333 K - 1 min - 40 K/min -423 K - 4 K/min - 513 K - 15 min, Trägergas He 1,6 bar, split 17 ml/min).

Die Abbildung 5.3 zeigt ein typisches Chromatogramm der CKW-Bestimmung von Wasserdampfextrakten auf einer DB-5-Kapillarsäule für die Station LLS 50. Um die integrierte Peakfläche in Konzentrationen (µg/kg Trockenmasse) umrechnen zu können, wurde vor und nach jeder Sequenz eine Standardmischung vermessen und über den externen Standard eine Einpunkteichung durchgeführt.

Die Bestimmung des TOC-Anteils in dem Gesamtsediment erfolgte mittels der Verbrennungs-IR-Methode nach W. Ernst [54]. Nach der Entfernung der Karbonate durch Salzsäure wird das getrocknete Sediment im Sauerstoffstrom verbrannt. Das gebildete Kohlendioxid wird mit einem IR-Analysator der Firma Beckman quantifiziert, wobei die Eichung mit einer Oxalsäure-Testlösung erfolgt.

5.2 Routine-Analysen der unfraktionierten Wattsedimente

Zur Auswertung gelangten Penta- und Hexachlorbenzol (QCB*, HCB), α- und γ-HCH, Octachlorstyrol (OCS) p,p'-DDE, p,p'-DDD, p,p'-DDT und die polychlorierten Biphenyle Nr. 28, 52, 101, 118, 138, 153 und 180. Bei der Analytik der PCB Nr. 28 und 153 handelt es sich nicht um Einzelbestimmungen, da bei dieser Analysenmethode PCB 28 mit 31 coeluiert und bei PCB 153 Coelution mit PCB 132 und 105 beobachtet wurde [47].

Die CKW-Gehalte wurden in μ g/kg Trockenmasse des Sediments angegeben, wobei die Bestimmungsgrenze bei 0,05 μ g/kg Trockenmasse lag.

In den Abbildungen und Tabellen wird "nicht nachgewiesen" und "kleiner als die Bestimmungsgrenze" als 0,00 dargestellt.

5.2.1 CKW-Gehalte bezogen auf die Trockenmasse

5.2.1.1 Darstellung nach Art und Konzentration

Die einzelnen Chlorkohlenwasserstoffgehalte sind in den Abbildungen 5.4.1 bis 5.4.5 und der Tabelle 9.8 (Anhang) dargestellt, wobei folgende örtliche Reihenfolge der Wattgebiete festgelegt wurde:

Ostfriesisches Watt (BO, JU, NO, BA, LA, SP, WA, MO), Jadebusen und Hoher Weg (HS, ME, HW, JB), Wesermündung (LLS, ES, KS), Elbemündung (E), Dithmarscher Watt (T, B), Nordfriesisches Watt (PW, NS, LN, AM, FO, SY).

Im Vergleich zur Schwermetall-Analytik stellt man bei der Betrachtung der gemessenen Konzentrationen fest, daß die CKW-Belastung um 3 bis 6 Größenordnungen geringer ausfällt. Dies ist ein Grund, weshalb die organische Analytik kompliziert und aufwendig ist und sich die geringsten Verunreinigungen in diesem Konzentrationsbereich sehr störend auswirken.

^{*)} Um Verwechselungen zu vermeiden, wurde die Abkürzung PCB (sonst: polychlorierte Biphenyle) in diesem Fall nicht gewählt. Statt dessen wurde die Abkürzung QCB (Quintachlorbenzol) eingesetzt.

5.2.1.2 Feststellung von Belastungsschwerpunkten

Belastungsschwerpunkte wurden im Ostfriesischen Watt (Proben JU 289, LA 29, SP 14, HS 96), im Jadebusen (Proben JB 5, JB 12, JB 28, JB 38), in der Elbemündung (E 9) und im Nordfriesischen Watt (Proben NS 335, SY 16) gefunden. Es zeigte sich, daß die Sedimente aus dem Bereich des Jadebusen am höchsten von allen Regionen durch Chlorkohlenwasserstoffe belastet sind.

Chlorierte Benzole und Octachlorstyrol

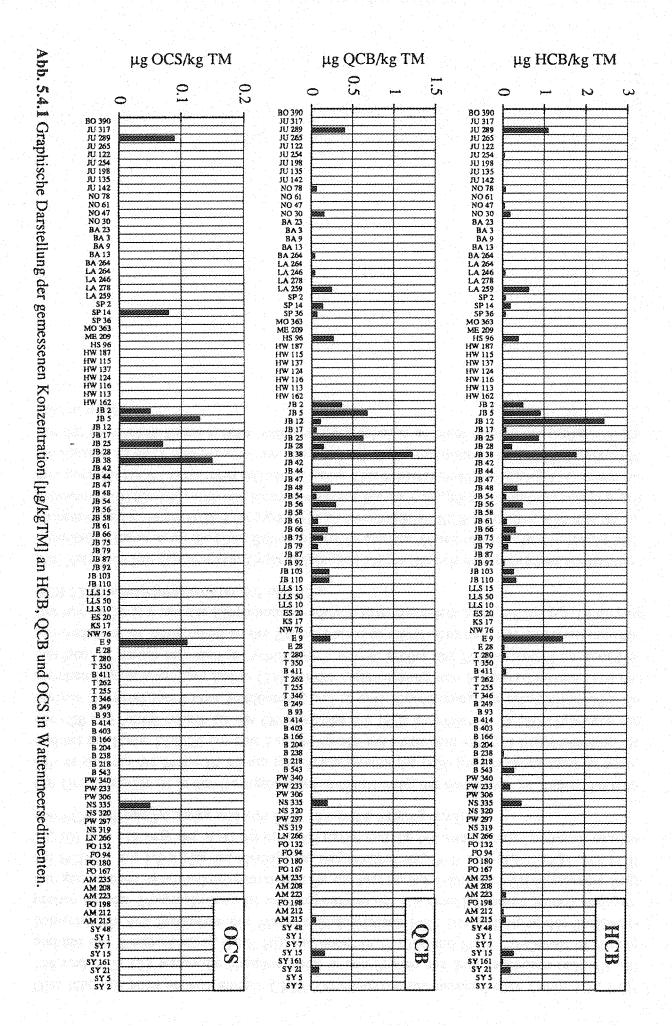
Eine hohe Belastung der Sedimente mit HCB, QCB und OCS zeigten die Proben aus dem Jadebusen sowie die Probe JU 289 aus dem Ostfriesischen Watt. HCB und OCS wurden außerdem in der Probe aus der Elbemündung (E 9) in vergleichsweise hohen Konzentrationen gefunden. Ein hoher HCB-Gehalt ist für die Schwebstofffraktion der Elbe charakteristisch [46]. Die größte gemessene Konzentration war für HCB 2,46 μg/kg, für QCB 1,23 μg/kg und für OCS 0,15 μg/kg.

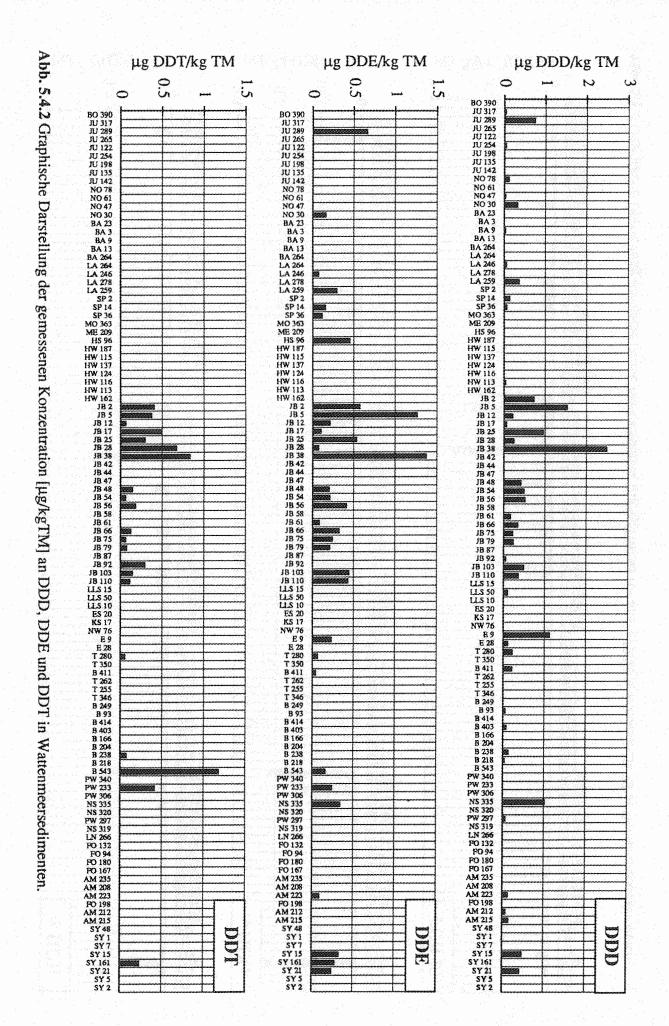
DDT und Metaboliten

Die Abbildung 5.4.2 zeigt die Konzentrationen von DDT und dessen Metaboliten. Die Hauptbelastung der Sedimente wurde für p,p'-DDD mit bis zu 2,5 μg/kg TM beobachtet. Auch hier waren die Proben aus dem Jadebusen (JB 5, JB 38) am stärksten belastet. Außerdem wurde eine hohe Belastung der Probe aus der Elbemündung (E 9) und aus dem Nordfriesischen Watt (NS 335) gefunden. Die gefundenen Höchstbelastungen für DDT und dessen Metaboliten war 1,1 μg/kg für DDT, 1,35 μg/kg für DDE und 2,5 μg/kg für DDD.

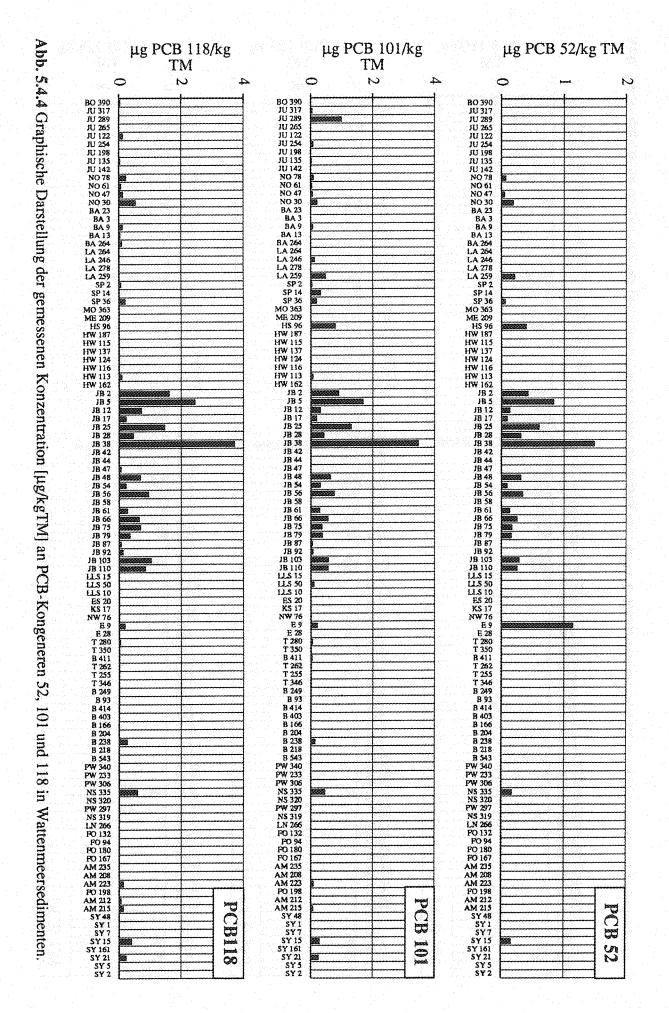
Hexachlorcyclohexan

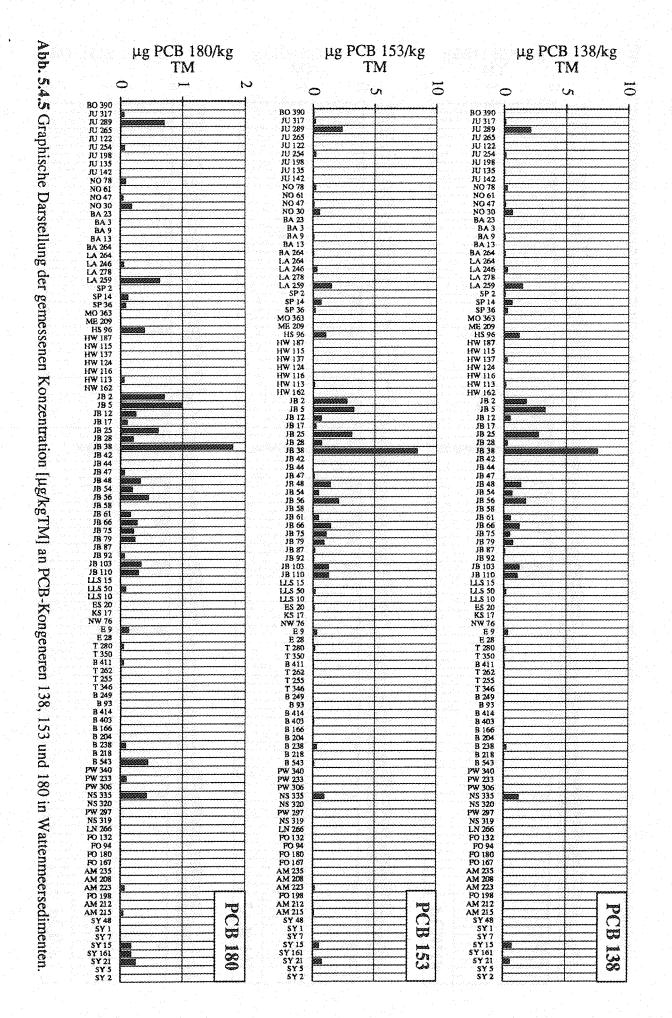
Die Gehalte von α - und γ -HCH in den Wattsedimenten sind im Vergleich zu denen der übrigen CKW verhältnismäßig gering. Ein Grund dafür ist die bessere Wasserlöslichkeit dieser Komponenten. So ist γ -HCH nur zu ca. 10 % an den Schwebstoffen gebunden [48]. Dennoch treten auch hier hohe Belastungen an den Stationen E 9, JU 289 sowie im Jadebusen auf. HCH wurde in Maximalkonzentrationen von 0,64 µg/kg (α -HCH) und 0,22 µg/kg (γ -HCH) gefunden.

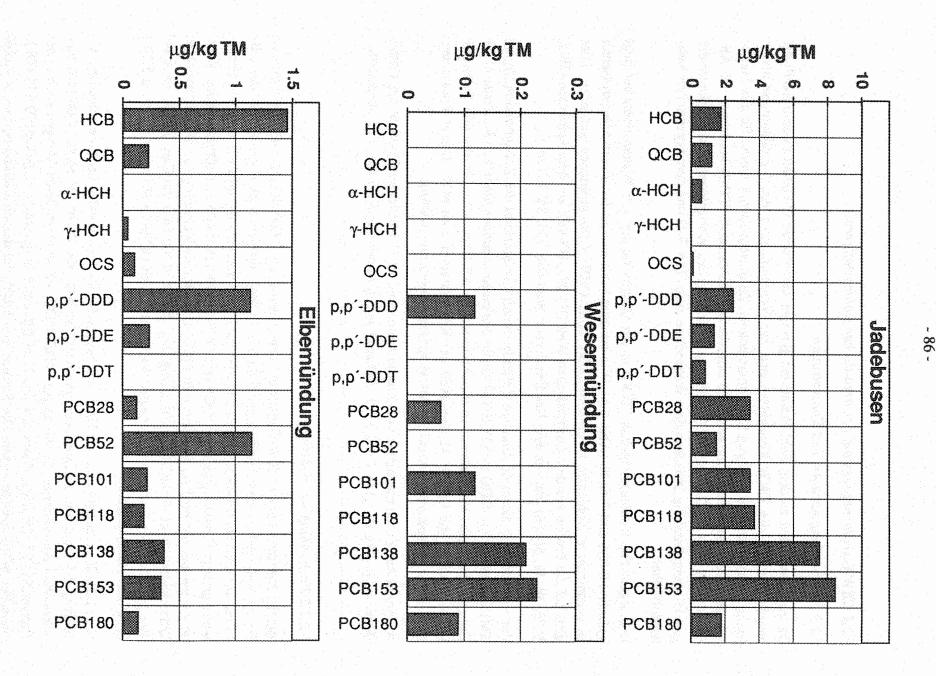

Polychlorierte Biphenyle


Für die polychlorierten Biphenyle (PCB) stellt man die gleichen Belastungsschwerpunkte fest wie für die oben aufgeführten Stoffgruppen. Neben JU 289, LA 29 im Ostfriesischen Wattenmeer sind auch der Jadebusen sowie die Elbemündung stark mit PCB-Kongeneren belastet. Die polychorierten Biphenyle (PCB) stellten von allen gemessenen CKW mit bis zu 8,5 µg/kg TM (PCB 153 in der Probe JB 38) die Hauptbelastung dar.

Dies läßt sich auch anhand einiger CKW-Verteilungsmuster verdeutlichen (Abb. 5.5). PCB 138 und PCB 153 waren die Hauptvertreter in den Proben aus dem Jadebusen (z.B. JB 38) und aus der Wesermündung (LLS 50). Ein hoher PCB 138- und PCB 153-Gehalt ist für die Schwebstoffe und Sedimente der Weser charakteristisch [49]. Die Belastung der Sedimentproben aus der Wesermündung ist im Vergleich zu der aus dem Jadebusen jedoch geringer. Die gemessenen Maximalkonzentrationen für die hier berücksichtigten PCB-Kongenere liegt bei PCB 52 mit 1,5 μg/kg am niedrigsten, vergleichbar mit PCB 180 (1,8 μg/kg). Für PCB 28, 101 und 118 liegt der Wert bei etwa 3,5 μg/kg und die höchsten Konzentrationen werden von PCB 138 mit 7,6 μg/kg und von PCB 153 mit 8,5 μg/kg erreicht.


Ein Grund hierfür ist in der Korngrößenzusammensetzung der Sedimente zu finden. So handelt es sich bei der Probe JB 38 um eine Schlickwattprobe (<20 μm-Feinkornanteil ist hoch) und bei der Probe LLS 50 um eine Sandwattprobe mit niedrigem <20 μm-Feinkornanteil. Da der <20 μm-Anteil stärker als die Gesamtprobe mit PCB angereichert ist [50], bewirken die übrigen Kornfraktionen eine Verdünnung und so eine Erniedrigung der Konzentrationen. Zu gleichen Ergebnissen kam Lohse [51] bei der Untersuchung von Meeressedimenten aus der Nordsee. Er stellte fest, daß je "schlickiger", d.h. je größer der Feinkornanteil an dem Gesamtsediment ist, desto höher ist die Konzentration an CKW. Aus dem CKW-Verteilungsmuster der Probe E 9 aus der Elbemündung erkennt man besonders hohe HCB-, p,p'-DDD und PCB 52-Konzentrationen (Abb. 5.5 und 5.9).


Der Vergleich mit den jüngsten Untersuchungen [52] im Bereich der spanischen Mittelmeerküste bei Alicante zeigt die hohe Belastung des Deutschen Wattenmeeres. So wurden im Mittelmeerküstensediment 0,05-9,69 μ g/kg TM an Gesamtgehalt PCB gefunden, während im Jadebusen PCB153+132+105 mit Konzentrationen bis zu 8,5 μ g/kg TM auftritt. Analog gilt dies auch für HCB (Mittelmeer 0,01-0,12 μ g/kg TM, Elbestation E9 2,5 μ g/kg TM) sowie für die Summe an DDT und Metaboliten, die bis zu einer Konzentration von 0,01-0,3 μ g/kg TM vor der spanischen Küste auftritt, während im Jadebusen an einer Station 4,7 μ g/kg TM gefunden wurde.

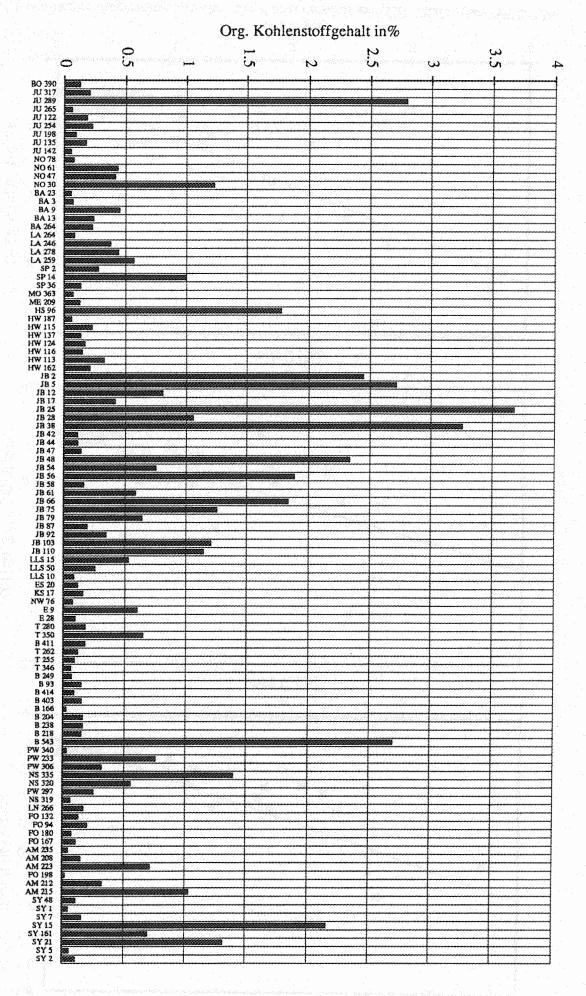


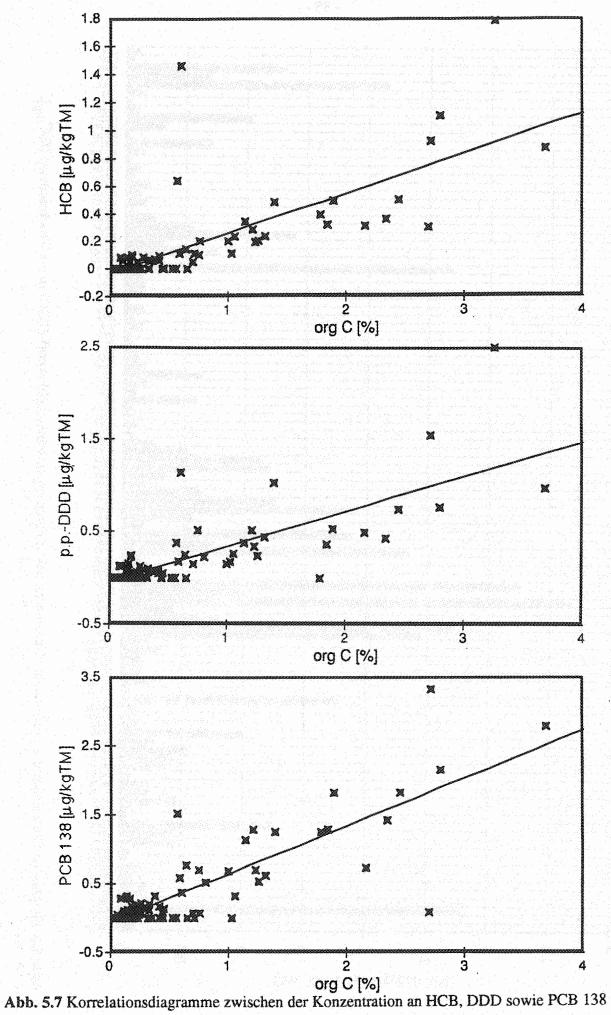
5.2.2 CKW-Gehalte bezogen auf den organischen Kohlenstoffgehalt

5.2.2.1 Darstellung nach Art und Konzentration

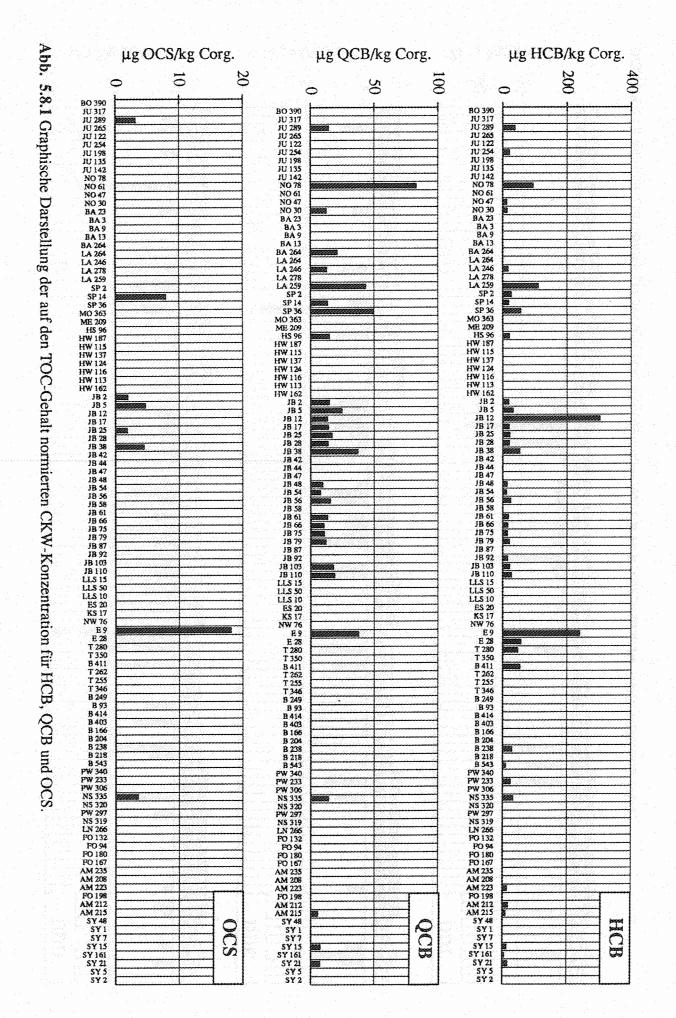
Da im Unterschied zu dem Schlickwatt ein geringer organischer C-Gehalt in dem Sandwatt besteht, wurden die CKW-Konzentrationen zur Verdeutlichung des Verdünnungseffektes (siehe oben) zusätzlich in µg/kg Corg umgerechnet. Zu diesem Zweck wurde für alle Stationen der prozentuale Anteil an gesamten organischen Kohlenstoff (TOC) bestimmt. Die Abbildung 5.6 zeigt die Gehalte an TOC für die Sedimente des Wattenmeeres. Man erkennt die gute Übereinstimmung zwischen dem Wattsedimenttyp (Tab. 9.4) und dem organischen Kohlenstoffgehalt.

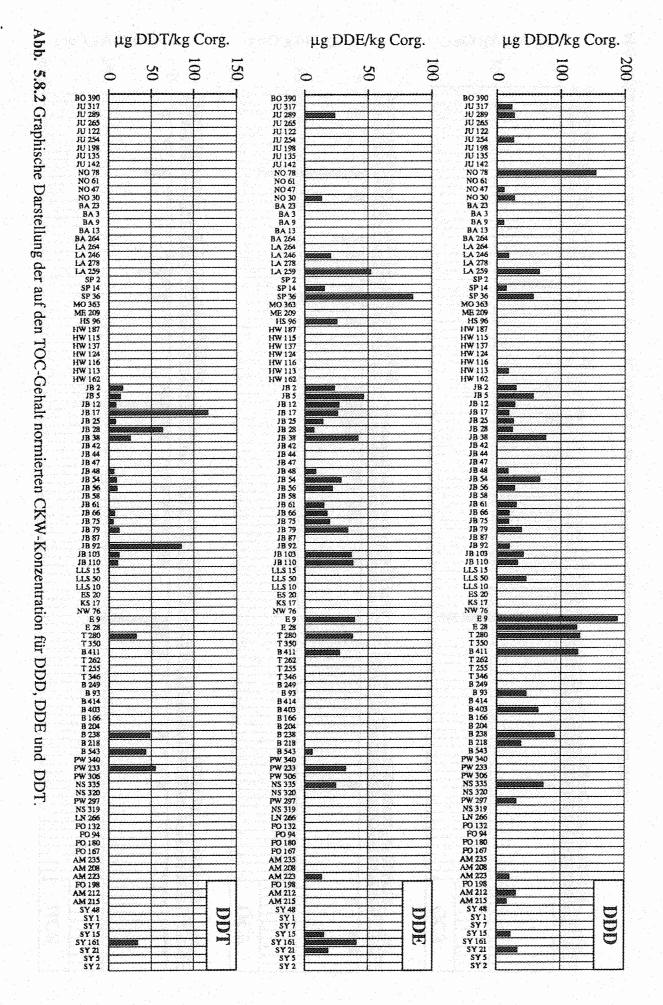
Der organische Kohlenstoffgehalt (TOC) in der Gesamtfraktion der Wattensedimente liegt zwischen 0,026 und 3,68 % (Abb. 5.6). Wie erwartet [48], wurden bei einem höheren Gehalt an organischem Kohlenstoff verhältnismäßig hohe CKW-Konzentrationen gefunden. Dies trifft auf die Proben aus dem Ostfriesischen Watt (JU 289, HS 96), aus dem Jadebusen (JB 2, 5, 25, 38, 48, 56, 66) und aus dem Nordfriesischen Watt (NS 335, SY 16) zu.

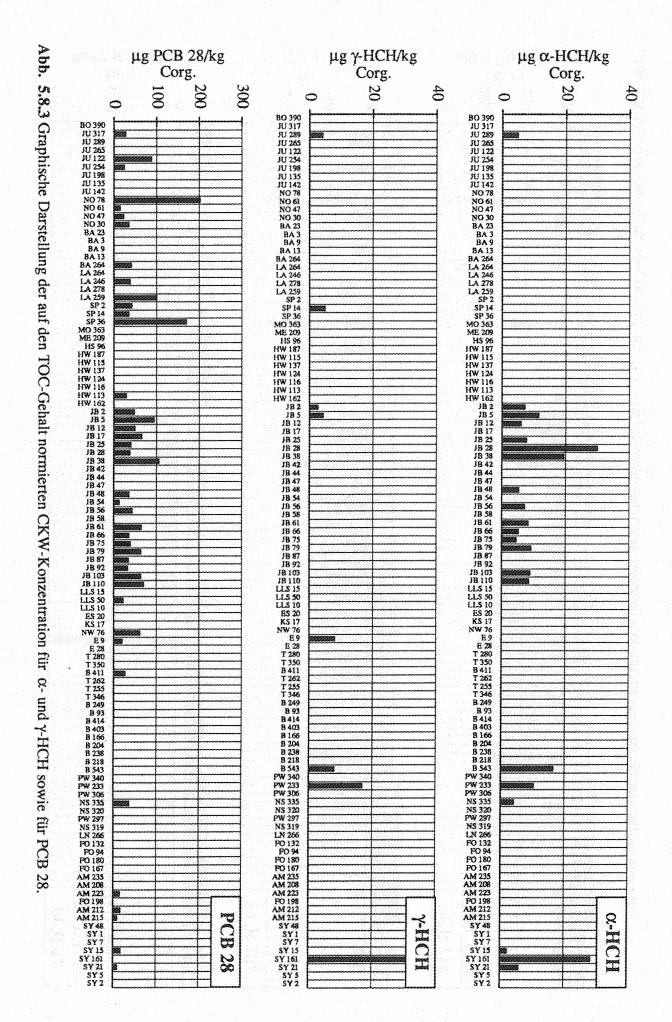

Zur Verifizierung dieses qualitativen Befundes wurden beispielhaft die Konzentration [μg/kg TM] von HCB, p,p'-DDD und PCB 138 gegen den entsprechenden Gehalt an Kohlenstoff [% Corg] aufgetragen. Man erkennt in den Abbildungen 5.7.1 bis 5.7.3 für alle drei Substanz-klassenvertreter die lineare Abhängigkeit der Konzentration vom POC. Dieser Zusammenhang ist für die spätere Entwicklung des Monitoringprogramms wichtig.

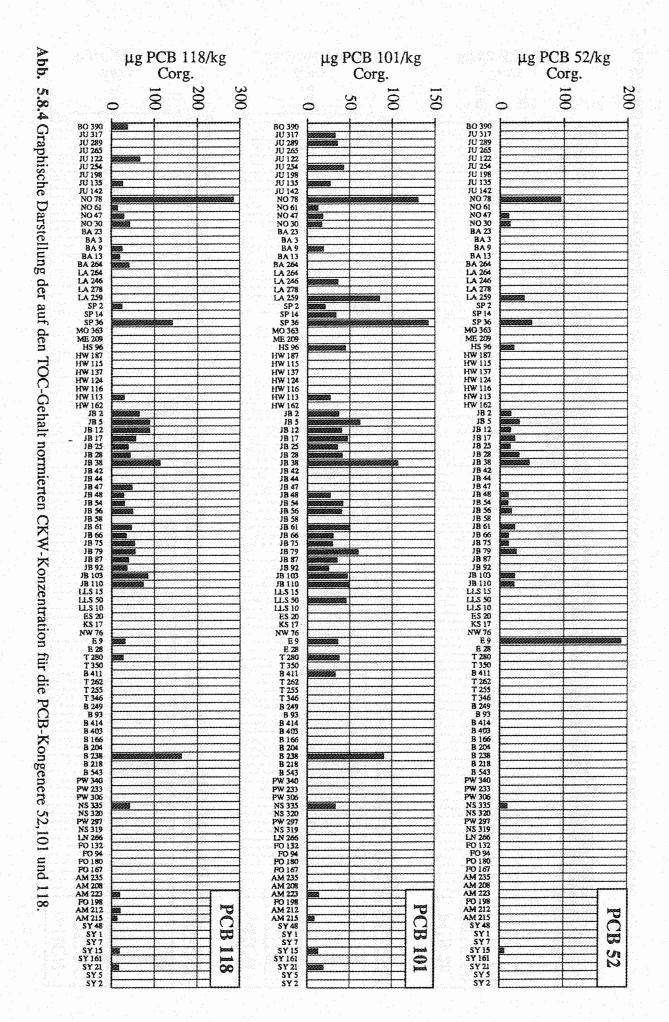

Aufgrund des Zusammenhangs von Konzentration und TOC wurde der Quotient der beiden Werte als [μg/kg Corg] in Tabelle 9.9 (Anhang) und in Abbildung 5.8.1 bis 5.8.5 dargestellt.

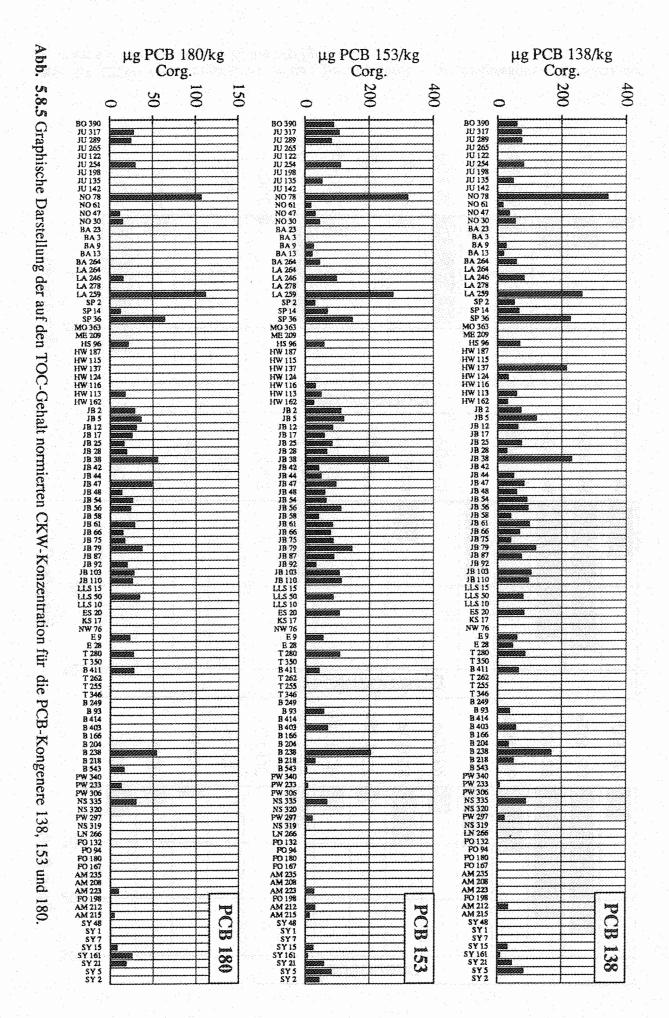
5.2.2.2 Feststellung von Belastungsschwerpunkten


Bei der Normierung der CKW-Gehalte auf den organischen C-Gehalt zeigen die Abbildungen 5.8 im Vergleich zu den Abbildungen 5.4 ein zum Teil abweichendes Ergebnis. So weist die Probe aus dem Ostfriesischen Watt (JU 289) nach der Umrechnung auf Corg eine vergleichsweise geringe Belastung an HCB, QCB und OCS auf. Die Probe NO 78 (Ostfriesisches Watt) zeigte danach die höchste Belastung an QCB. Die Maximalbelastung für alle untersuchten Wattstationen liegt für HCB bei 305 $\mu g/kgCorg$, für QCB bei 84 $\mu g/kgCorg$ und für OCS bei 19 $\mu g/kgCorg$. Die Gesamtbelastung des Wattenmeeres an HCB+QCB ist in Abbildung 5.10.1 als Übersicht dargestellt.


Sehr hohe Konzentrationen von DDT und dessen Metaboliten wurden im Unterschied zu Abbildung 5.4 nicht nur im Jadebusen gefunden. So hatte die Probe SP 36 aus dem Ostfriesischen Watt den höchsten Gehalt an p,p'-DDE. DDD wurde in größeren Mengen auch in den Proben NO 78 (Ostfries. Watt), E 9 und E 28 (Elbemündung) sowie T 280 und B 111 (Dithmarscher Watt) nachgewiesen. Die Summe von DDT und dessen Metaboliten ist in Abbildung 5.10.2 als Wattenmeerbelastung dargestellt. Die maximale Konzentration ist für DDT $\mu g/kgCorg$, für DDD189 $\mu g/kgCorg$ und für DDE $86 \mu g/kgCorg$.






und dem organischen Kohlenstoff (TOC) für alle vermessenen Wattsedimentstationen.

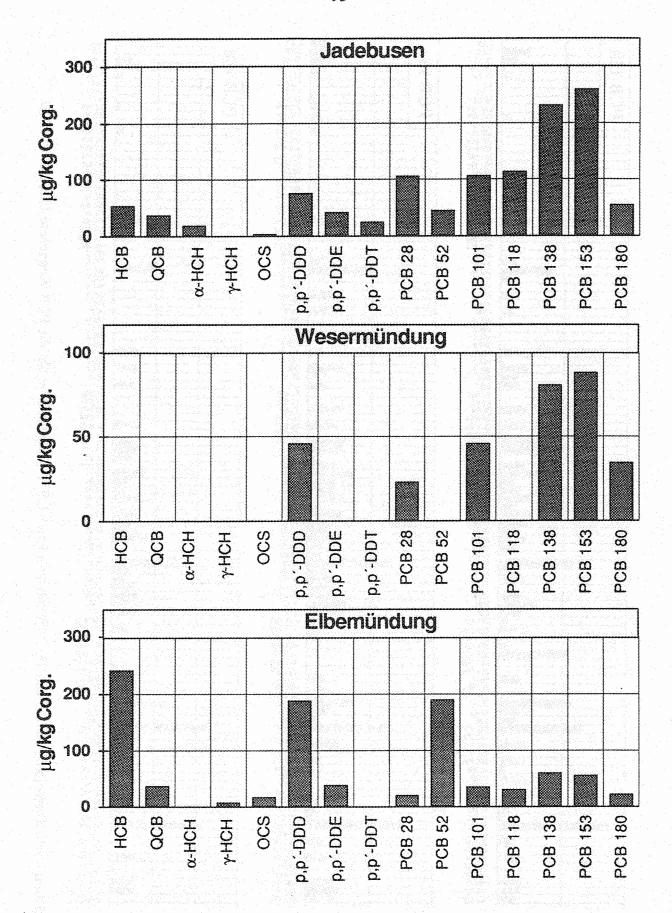


Abb. 5.9 CKW-Verteilungsmuster in den Sedimentproben an ausgewählten Wattstationen (normiert auf den organischen Kohlenstoffgehalt).

Auch bei der Normierung auf den organischen C-Gehalt lagen α - und γ -HCH in den Wattsedimenten in verhältnismäßig geringen Konzentrationen vor. Die höchste Konzentration beträgt so für α -HCH 30 μ g/kgCorg und für γ -HCH 31 μ g/kgCorg. Die Addition der HCH-Isomerenkonzentration ist für alle Stationen in Abbildung 5.10.3 dargestellt.

Lindan ist grundsätzlich ein Problem der Sedimentanalytik, da es sich bevorzugt im Wasser-körper und weniger stark an Feststoffen aufhält. Dies ist mit dem Octanol/Wasser-Verteilungskoeffizienten (K_{ow}) erklärbar. Lindan kann durch Adsorption an Feststoffen nicht dauerhaft festgelegt werden [51]. Remineralisierung durch Desorption ist so leicht möglich.

Die polychlorierten Biphenyle stellten die Hauptbelastung dar. Hohe Belastungen mit PCB wurden in folgenden Proben gefunden: NO 78, LA 29 und SP 36 (Ostfries. Watt), JB 38 (Jadebusen), E 9 (Elbemündung) und B 238 (Dithmarscher Watt). Die Summe der Konzentrationen aller bestimmten PCB-Kongenere ist in Abbildung 5.10.4 dargestellt. Die Höchstbelastung beträgt für die Einzel- bzw. Summen-Kongenere PCB 28+31 203 μg/kgCorg, PCB 52 190 μg/kgCorg, PCB 101+90 143 μg/kgCorg, PCB 118+149+123 286 μg/kgCorg, PCB 138+158 346 μg/kgCorg, PCB 153+132+105 322 μg/kgCorg und PCB 180 107 μg/kgCorg. Diese Ergebnisse decken sich mit den Messungen in der Nordsee. Dort treten PCB- und HCB-Belastungen entlang der Flußfahnen und Verklappungsgebiete auf [51]. Die Hinweise, daß sich perchlorierte Aromaten bei der Verbrennung von Kohlenwasserstoffen mit Halogenverbindungen bilden und als Begleiter von Dioxinen/Furanen auftreten, lassen den Schluß nicht zu, daß die Stationen mit hohem OCS, HCB-Gehalt auch mit Dioxinen und Furanen belastet sein müssen.

Tab. 5.2 Summe einzelner Verbindungsklassen: Zuordnung der verwendeten Farben zur Darstellung der Konzentrationen (in $\mu g/kg$ Trockenmasse) im Deutschen Wattenmeer.

Farbe	QCB+HCB	DDE+DDD+DDT	α-НСН+у-НСН	Summe PCB
weiß	0.00 - n.n - <bg< td=""><td>0.00 - n.n - <bg< td=""><td>0.00 - n.n - <bg< td=""><td>0.00 - n.n - <bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	0.00 - n.n - <bg< td=""><td>0.00 - n.n - <bg< td=""><td>0.00 - n.n - <bg< td=""></bg<></td></bg<></td></bg<>	0.00 - n.n - <bg< td=""><td>0.00 - n.n - <bg< td=""></bg<></td></bg<>	0.00 - n.n - <bg< td=""></bg<>
blau	0.00 - 50	0.00 - 30	0.00 - 10	0.00 - 200
grün	50 - 100	30 - 60	10 - 20	200 - 400
gelb	100 - 150	60 - 90	20 - 30	400 - 600
orange	150 - 200	90 - 120	30 - 40	600 - 800
rot	> 200	> 120	> 40	> 800

Es läßt sich feststellen, daß bei der Normierung auf den organischen C-Gehalt im Unterschied zur Normierung auf die Trockenmasse Belastungsschwerpunkte auch im Dithmarscher Watt (Proben T 280, B 111 und B 238) gefunden wurden.

Der Vergleich nahe beianderliegender Probenahmeorte zeigt für die Stationen zwischen der Ostfriesischen Insel Juist und dem Festland (JU 122 - JU 317), daß die Meßergebnisse bis auf einige Ausnahmen immer unter der Bestimmungsgrenze liegen. Die auffälligste Ausnahme bildet die Station JU 289. Durch ihren Watttyp ist für alle Substanzklassen eine deutlich erhöhte Konzentration festzustellen. In gleicher Weise gilt dies auch für die Mischwattstation

JU 254. Die höhere Konzentration ist auf den bereits diskutierten Umstand des höheren Kohlenstoffanteils im Schlick- bzw. Mischwatt zurückzuführen. Anders als bei Station JU 135 und JU 317, hier ist für p,p'-DDD und einzelne PCB-Kongenere eine abweichende Konzentration von den übrigen Sedimenten zu beobachten. Dies könnte auf die Lage am Rande größerer Priele zurückzuführen sein.

Gleiche Resultate erhält man für die Baltrum-Sedimente. An allen Stationen, an denen Sandwatt vorherrscht, ist keine Belastung feststellbar, während an den Mischwattsedimenten QCB und PCB nachgewiesen wurde.

Für die Mehrzahl der Stationen im Jadebusen ist eine deutliche Belastung an organischen Schadstoffen feststellbar. Die dichte Probenahme im Jadebusen ermöglicht es, die Ergebnisse vergleichend zu betrachten: Man stellt fest, daß Regionen mit überwiegend Sandwatt weniger belastet sind als die westliche Buchtseite, wo mehr Schlickwatt vorherrscht. Die dichte Beprobung in dem Jadebusen spiegelt seine Funktion als Schwebstoffsenke wider. Hier, genauso wie im Dollart, ist die Sedimentschicht weniger durch Gezeiten und meteorologische Einflüsse umgestaltet worden und wird ständig durch Sedimentation aufgebaut.

Betrachtet man alle untersuchten organischen Substanzen, so stellt man fest, daß die Belastungsschwerpunkte bevorzugt in Gebieten mit hoher Sedimentationsraten liegen. Dies sind Wattregionen, die abseits der Priele und Flüsse liegen und als Bucht vor Resuspendierung geschützt sind.

Die am Ausgang des Jadebusen liegenden Sandwattstationen HW 113-137 weisen keine Belastung oberhalb der Bestimmungsgrenze von $0.05~\mu g/kg$ TM auf. Lediglich PCB 138 ist in den benachbarten Stationen im Watt feststellbar. Die Konzentration ist zwar gering, trotzdem ist die punktuelle Belastung auch in anderen Stationen sichtbar. Wie kurz die "Reichweite" solcher Belastung ist, zeigt das Profil HW 137 -124 -116. Bei Station HW 137 ist eine Konzentration von über 200 $\mu g/kg$ Corg festzustellen, während die Konzentration bei Station HW 116 unter die Bestimmungsgrenze (entsprechend 0.05~ng/kg TM) gesunken ist.

In etwa gleicher Entfernung zueinander liegen die Stationen LLS 15 und LLS 50. Obwohl LLS 15 näher an der Wesermündung und der Flußmitte liegt, ist bei Station LLS 50 im Gegensatz zu LLS 15 für PCB und p,p'-DDD eine deutliche Belastung festzustellen. Obwohl bei LLS 15 der organische Kohlenstoffgehalt doppelt so hoch ist, sind hier für die Substanzen keine Schadstoffe zu messen. Es zeigt sich deutlich, wie die Konzentrationen bei Stationen annähernd identischer Sedimentart variieren.

Die Ergebnisse im Ostfriesischen Watt bei Juist und Baltrum gelten entsprechend für die Sedimentproben im Bereich Trischen-Büsum (T 255 - T 350, B 93 - 343).

Erste Untersuchungsergebnisse [53] weisen für zukünftige Arbeiten darauf hin, daß die Fraktionierung des Sediments ein brauchbarer Aufkonzentrierungsschritt darstellt. So konnte für Hafensedimente eine lineare Korrelation zwischen Corg und <20μm-Fraktion festgestellt werden. Des weiteren konnte gezeigt werden, daß sich die CKW bevorzugt in der <20μm-Fraktion aufhalten. Auch die Normierung auf die <20μm-Fraktion scheint, wie bei der Schwermetallanalytik schon Stand der Technik, gute Ergebnisse zu liefern. Die Probleme des langen Siebens, wie es besonders bei Sandwattsedimenten auftritt, kann dadurch minimiert werden,

in dem man, wie oben erwähnt, dem Vorschlag folgend bevorzugt Schlick- und Mischwattsedimente untersucht. Voraussetzung ist jedoch, daß eine einheitliche, reproduzierbare Fraktionierungmethode zur Anwendung kommt, die für alle Typen des Watts zuverlässige Werte liefert.

Die dieser Untersuchung zugrunde liegenden Daten für den Anteil <20µm und den Corg.-Gehalt sind in der Abbildung 5.11 gegeneinander aufgetragen. Die Korrelation zeigt auch hier, so wie die Ergebnisse von Schubert [53] auch zeigen, ein lineares Verhalten der beiden Parameter zueinander.

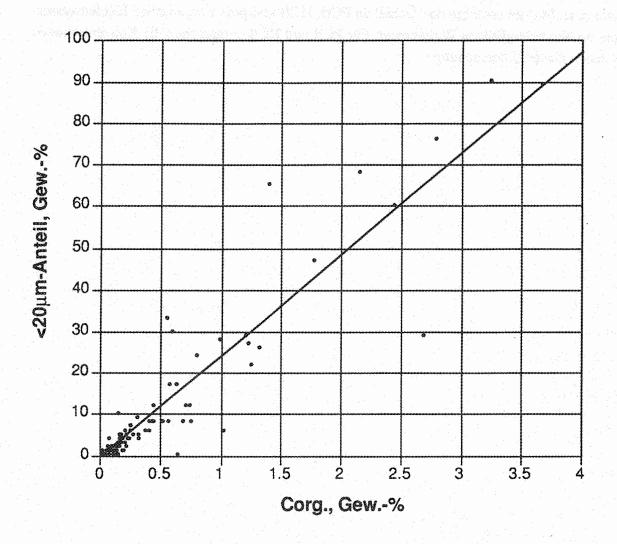


Abb. 5.11 Korrelation von <20µm-Anteil und Corg.-Gehalt der Wattsedimente für alle Stationen.

5.3 Vergleich der Analysenergebnisse

Die von Thiel et al. [11] im Wattenmeer (Ostfriesisches Watt, Sylt) genommenen Sedimentproben weisen etwa die gleichen Konzentrationen auf wie die vorliegende Untersuchung. Dies gilt besonders für PCB 153. Der Vergleich der Daten kann als Bestätigung unserer Messung angesehen werden. Bis auf γ -HCH sind die Werte innerhalb der Schwankungsbreite vergleichbar. Der Vergleich der Werte für γ -HCH mit Literaturwerten [11, 43] zeigt deutliche Unterschiede. Dies ist auf die unterschiedlichen Probenaufbereitungs- und Meßverfahren zurückzuführen.

Den Wattenmeeruntersuchungen entsprechende Bestimmungen von CKW wurden von Knickmeyer und Steinhart in der Nordsee durchgeführt [43]. Für beide Untersuchungsprogramme gibt es keine gemeinsamen oder nahe beieinanderliegende Stationen. Ein Vergleich der Ergebnisse ist deshalb schwierig. Grundsätzlich wird von Knickmeyer und Steinhart jedoch deutlich weniger CKW im Nordseesediment gefunden als in dieser Wattenmeeruntersuchung.

Kramer et al. [44] untersuchte den Gehalt an PCB, HCB und polyaromatischen Kohlenwasserstoffen im Niederländischen Wattenmeer. Für PCB und HCB entsprachen die Konzentrationen etwa denen dieser Untersuchung.

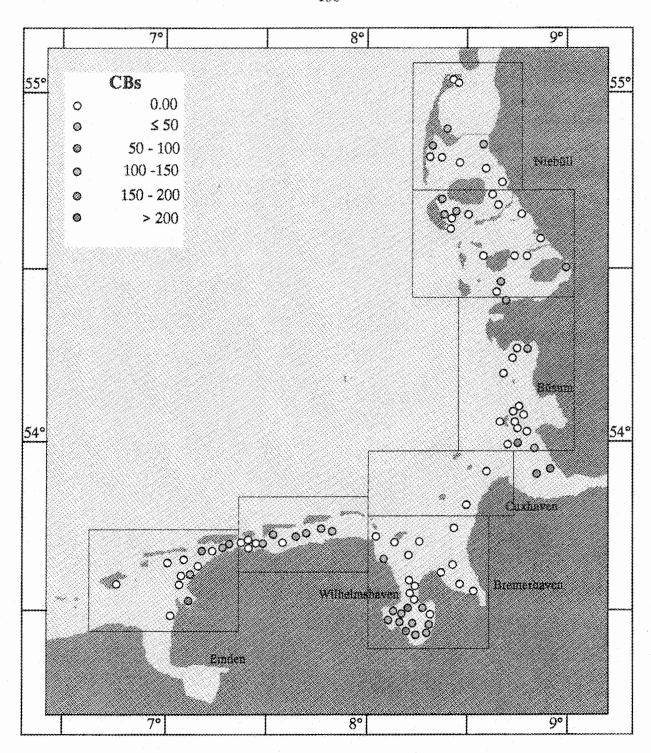
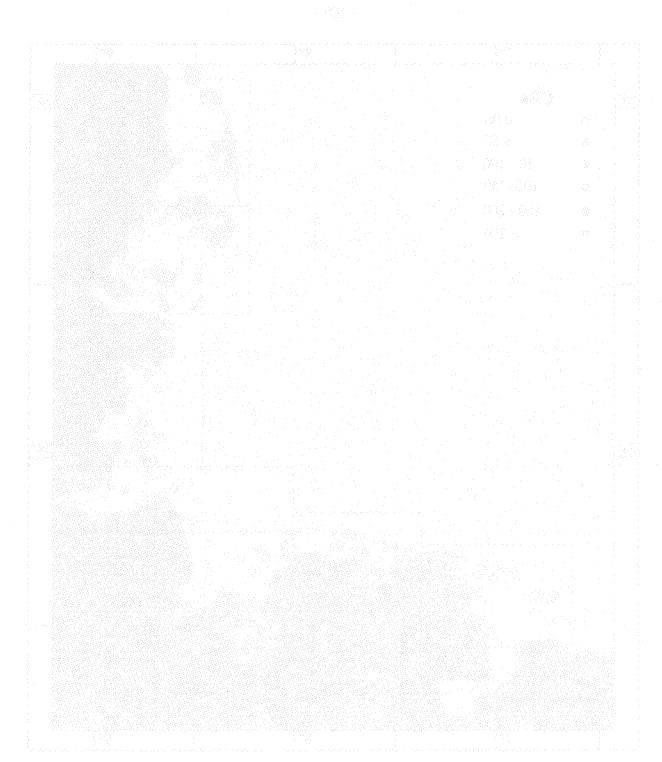



Abb. 5.10.1 Summengehalte [μ g/kg Corg] an HCB und QCB in Wattsedimenten. (Nähere Erläuterungen zu den farbigen Punkten siehe Tabelle 5.2).

add o'r 1966. Seithe engadento y cyflyg Chapp os 1866 e con 1960 blig Chenasteau o o'r daraeth 1877 o eachte an fae ddebynn florithau betar 1877 o bell

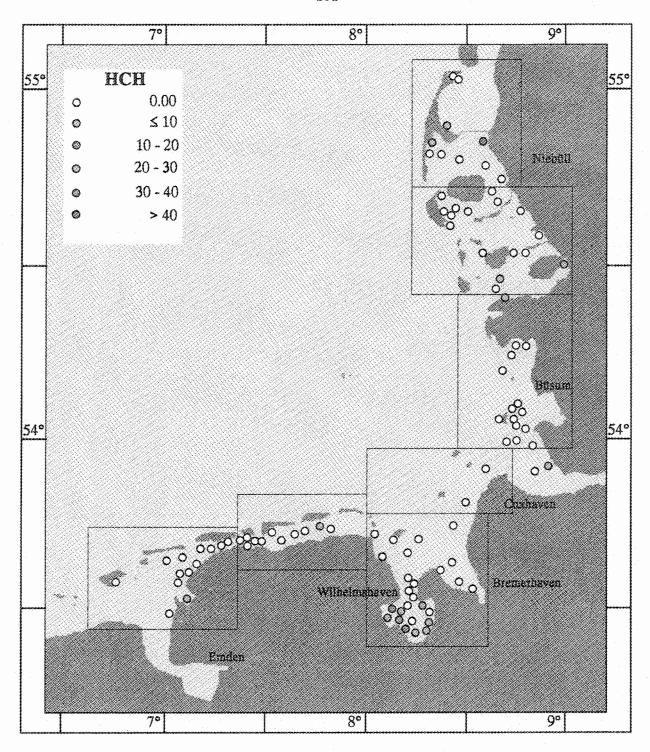
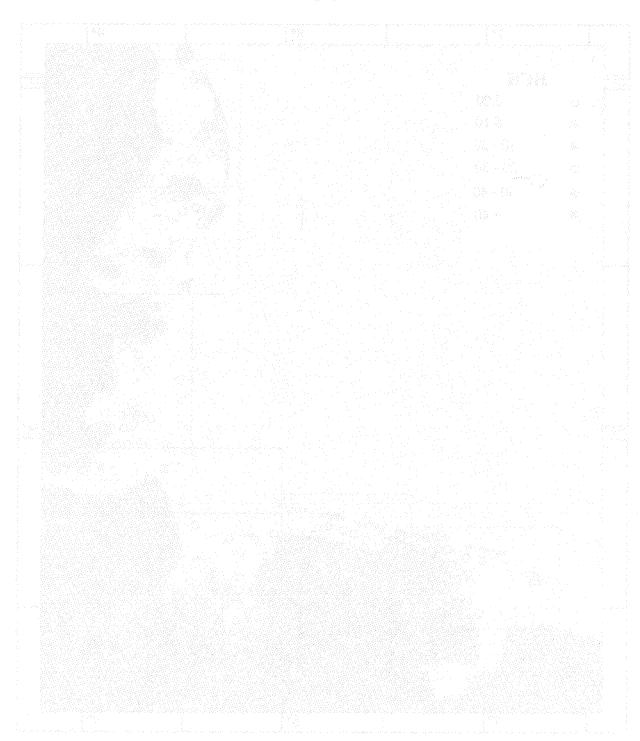



Abb. 5.10.2 Summengehalte [μ g/kg Corg.] an α - und γ -HCH in den Wattsedimenten. (Nähere Erläuterungen zu den farbigen Punkten siehe Tabelle 5.2).

edese filikult. Jaucarespandes jagikg Carej jast arakkyt 1971 ik erikuli bilkul esteteli medimen 1984et. Kolonia olehen milion kain and Makarespanda in 1980 (taken milion)

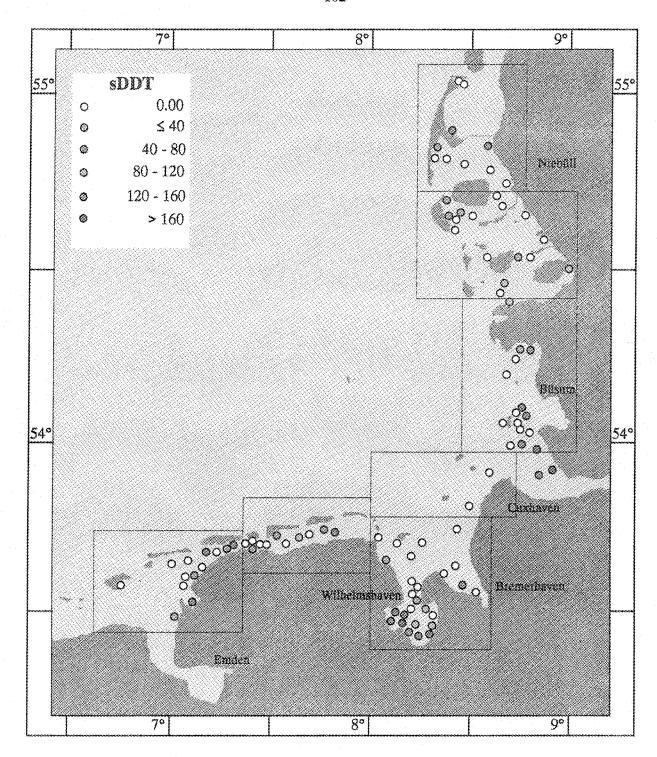


Abb. 5.10.3 Summengehalte [µg/kg Corg.] an DDE, DDD und DDT in Wattsedimenten. (Nähere Erläuterungen zu den farbigen Punkten siehe Tabelle 5.2).

2 de la 1903 M. de l'experte del Eligio de l'est per 20 de 1991, les le 20 M. le 19 de 20 de 1900 de 190 de 1 El desperte de la 1900 de desperte de la lacologie de l'est de 200 de 1991.

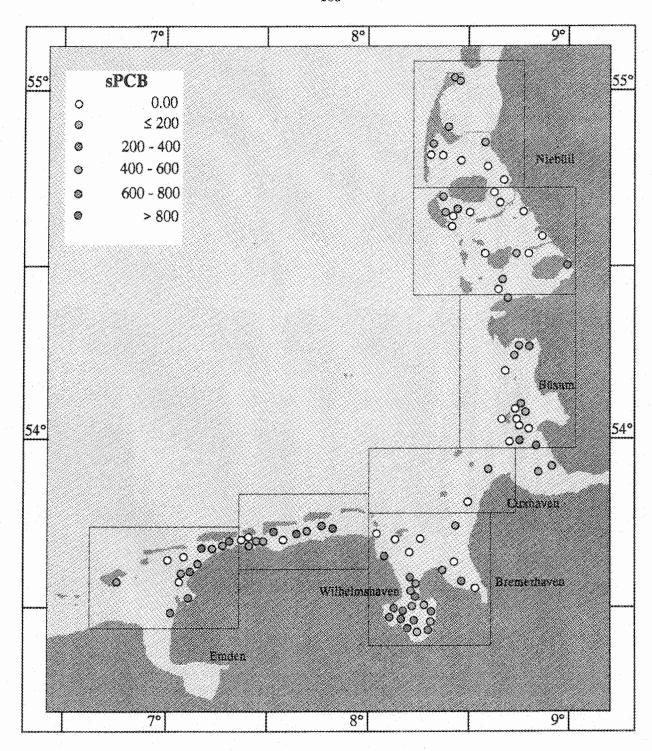
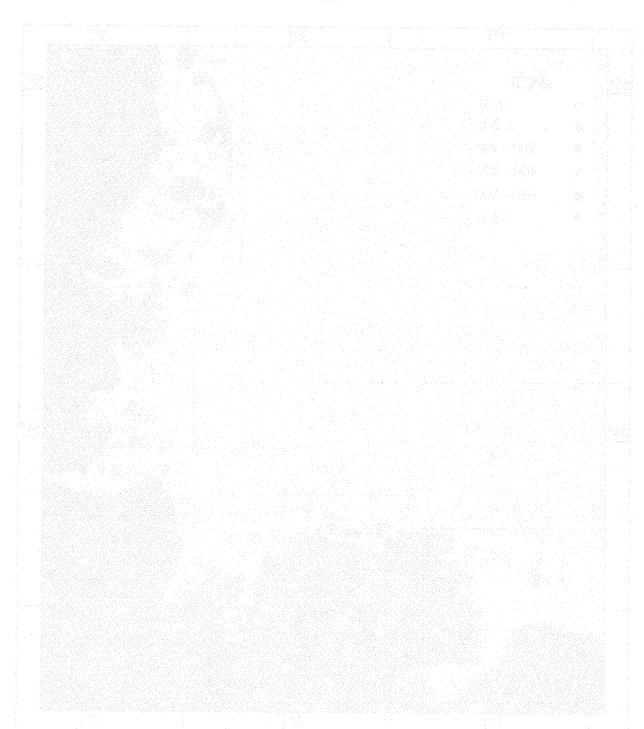



Abb. 5.10.4 Summengehalte [µg/kg Corg] der untersuchten PCB-Kongenere in den Wattsedimenten. (Nähere Erläuterungen zu den farbigen Punkten siehe Tabelle 5.2).

a da Ali especial de SANA, controller de la composition de la grada de la composition de la calcia de la compo Con la composition de la composition d

6. Konzeptvorschlag für ein Schadstoffmonitoring

Aufgrund der Untersuchungsergebnisse wurde der folgende Konzeptvorschlag für ein Schadstoffmonitoring im Eulitoral der Sedimente des deutschen Wattenmeeres erarbeitet. Er umfaßt die Auswahl der Probenahmeorte sowie geeignete Analysenverfahren (Probenahmetechnik, Probenaufbereitung, Analysenprinzipien) zur Bestimung von Schwermetallen und Chlorkohlenwasserstoffen.

Schwermetalle

Zur Bestimmung der Schwermetalle in Wattsedimenten hat sich das folgende Analysenverfahren bewährt:

- Probenahme

An den Probenahmeorten werden je nach Sedimentart pro Probe 3 bis 5 Stechrohre (Acrylglasröhrchen, Ø 2 cm) aus dem Umlagerungshorizont der Sedimente bis zu einer Tiefe von 7 bis 10 cm entnommen. Nach der Probenahme werden die Sedimente tiefgefroren gelagert.

- Probenvorbereitung

Die im Stechrohr tiefgefrorenen Sedimentproben werden gefriergetrocknet und anschließend homogenisiert. Von der unfraktionierten Sedimentprobe werden zunächst, für eine evtl. Analyse des Gesamtsediments, 5 bis 10 g der Probe zurückbehalten. Die verbleibende Sedimentprobe wird nach Korngrößen separiert: Die Korngrößenfraktionen <200μm, 200-630μm und >630μm werden durch Trockensiebung, die Fraktionen <200μm, 20-63μm und 63-200μm durch Naßsiebung im Ultraschallbad abgetrennt. Die Sedimentfraktionen werden aus den Suspensionen abzentrifugiert, gefriergetrocknet und ausgewogen.

- Probenaufbereitung

<20µm-Fraktion für Routine-Analytik

Die <20μm-Fraktion wird für die routinemäßige Multielementbestimmung in Wattsedimenten ausgewählt, da die meisten Elemente überwiegend in dieser Feinkornfraktion angereichert sind.

Der Mikrowellenaufschluß mit konz. HNO_3 (ca. 250 mg <20 μ m) wird als Aufschlußmethode zur routinemäßigen Multielementbestimmung eingesetzt. Er zeichnet sich durch eine einfache Handhabung, eine kurze Aufschlußzeit sowie durch die Möglichkeit der direkten Verdünnung im Aufschlußgefäß aus.

- Analysenprinzip

Die Bestimmung der Schwermetalle läßt sich sehr gut mit Hilfe der Atomabsorptionsspek-

troskopie (AAS) und der Totalreflexions-Röntgenfluoreszenzanalyse (TRFA) aus derselben feinkörnigen Aufschluß-Suspension bestimmen. Auch die optische Emissionsspektroskopie mit induktiv gekoppelter Plasmafackel (ICP-OES) müßte hierfür geeignet sein.

Die Untersuchungen haben gezeigt, daß die Totalreflexions-Röntgenfluoreszenzanalyse (TRFA) aufgrund der einfachen Quantifizierung mit interner Ein-Element-Standardisierung ein sehr attraktives Analysenprinzip für die routinemäßige Multielementbestimmung in Wattsedimenten darstellt. Mit diesem Analysenprinzip ist die gleichzeitige Bestimmung nahezu aller geforderten Elemente wie Cr, Fe, Ni, Cu, Zn, As und Pb sowie zusätzlicher Elemente wie z B. Ca, V, Mn, Ga, Rb, Sr und Y möglich.

Für eine ökonomische Aufarbeitung der anfallenden Proben ist anzustreben, die AAS durch Multielementverfahren wie die ICP/OES oder TRFA zu ergänzen.

Für eine interne Überprüfung der Routine-Analysen hat sich das Referenzmaterial NBS 1646 ("Estuarine Sediment") als gut geeignet erwiesen.

Chlorkohlenwasserstoffe

Aufgrund der Untersuchungsergebnisse ist festzustellen, daß die Chlorkohlenwasserstoffgehalte sehr stark vom Wattsedimenttyp abhängen. Daher sollte sich die Beprobung aus Sicht der Chlorkohlenwasserstoff-Analytik auf die Schlickwattsedimente bzw. auf die Mischwattsedimente konzentrieren.

- Probenahme

An den Probenahmeorten werden je nach Sedimentart pro Probe 2 Sedimentkerne (elektropolierte V2a-Stahlstechrohre, Ø 5,5 cm) aus dem Umlagerungshorizont der Sedimente bis zu einer Tiefe von 7 bis 10 cm entnommen. Nach der Probenahme werden die Sedimente entweder in den Stechern tiefgefroren gelagert oder z.B. in Aluminiumschalen umgefüllt.

- Probenvorbereitung

Die Sedimentproben werden aufgetaut und ohne Auftrennung in Korngrößenfraktionen als feuchtes Sediment verwendet.

- Probenaufbereitung

Gesamt-Sediment

Die quantitative Analytik der zu bestimmenden schwerflüchtigen Chlorkohlenwasserstoffe wird in der Gesamtfraktion der Sedimente durchgeführt. In einem ersten Schritt der Anreicherung wird eine simultane Wasserdampfdestillations-Extraktionsmethode (WDDE) eingesetzt (ca. 50 g feuchtes Sediment). Nach einem anschließenden Cleanup mit konzentrierter Schwefelsäure wird der Extrakt auf ein definiertes Volumen eingeengt und gaschromatographisch untersucht.

Parallel hierzu wird eine Trockenmassenbestimmung des feuchten Sediments (Trocknung bei 105 °C) durchgeführt. Die Trockenmasse (TM) wird des weiteren auf den organischen Kohlenstoff-Gehalt analysiert und die Analysenergebnisse werden anschließend auf den Gehalt an organischem Kohlenstoff normiert.

Erste Untersuchungsergebnisse [53] weisen für zukünftige Arbeiten darauf hin, daß die

Fraktionierung des Sediments einen brauchbaren Aufkonzentrierungsschritt darstellt. Es konnte gezeigt werden, daß die Chlorkohlenwasserstoffe überwiegend in der $<20 \,\mu\text{m}$ -Fraktion enthalten sind. Auch die Normierung auf die $<20 \,\mu\text{m}$ -Fraktion scheint, wie bei der Schwermetallanalytik, gute Ergebnisse zu liefern.

- Analysenprinzip

Zur Bestimmung der schwerflüchtigen Chlorkohlenwasserstoffe ist ein Gaschromatograph mit Massenspektrometer (GC / MS) sehr gut geeignet. Bei der gaschromatographischen Analyse werden zwei Säulen mit chemisch gebundenen Phasen unterschiedlicher Polarität verwendet. Der Einsatz einer zweiten Säule dient zur Absicherung des auf der ersten Säule gewonnenen Analysenergebnisses. Die Probenaufgabe erfolgt im Splitless-Betrieb, die Detektion wird mit einem Electron-Capture-Detector (ECD) durchgeführt.

Um die integrierte Peakfläche in Konzentrationen (µg/kg Trockenmasse) umrechnen zu können, wird vor und nach jeder Sequenz eine Standardmischung vermessen und über den externen Standard eine Einpunkteichung durchgeführt.

Auswahl geeigneter Probenahmeorte

Die Ergebnisse der vorliegenden Arbeit dokumentieren für die analysierten Elemente und Verbindungen eine graduell unterschiedliche Belastung der Sedimente. Besonders hohe Gehalte wurden für PCB, Zn, As, Cd, Hg und Blei gefunden. Ein Gradient besteht insofern, als daß für bestimmte Elemente (Cr, Cu, Cd, Pb) in den Niedersächsischen Watten südlich der Elbe höhere Werte gemessen wurden als im Schleswig-Holsteinischen Bereich nördlich der Elbe. Eine gegengerichtete Tendenz konnte andeutungsweise lediglich für As nachgewiesen werden. In danach stärker belasteten Gebieten des Niedersächsischen Wattenmeeres ist die Verteilung homogener als nördlich der Elbe.

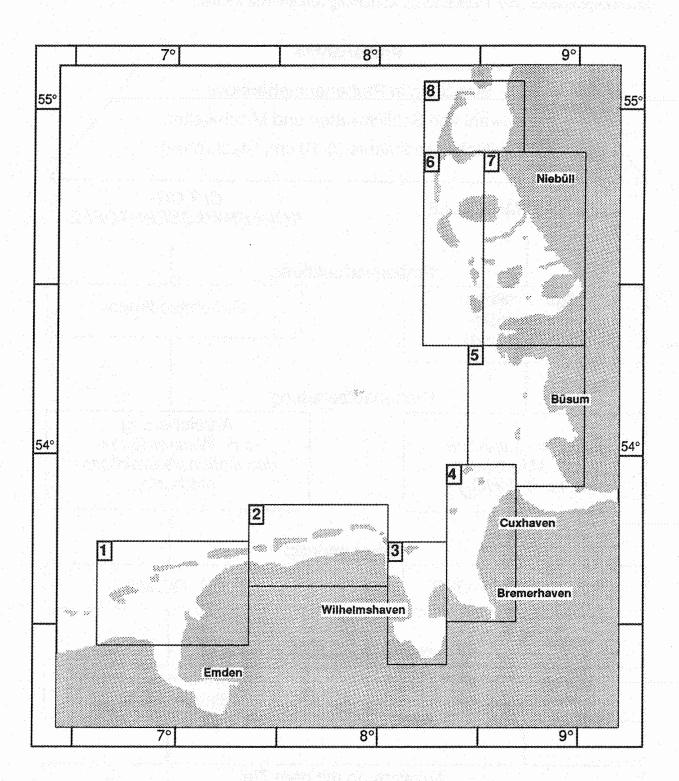
Für eine Reihe von Elementen lassen sich darüberhinaus Belastungsschwerpunkte abgrenzen, die hauptsächlich Regionen der Mündungsgebiete von Ems, Weser und Elbe betreffen, sowie den Hohen Weg, die Rückseitenwatten der Inseln Baltrum, Amrum und Sylt, wie auch, für Arsen, den Jadebusen.

In den Ergebnissen der zeitgleich aufgenommenen biologischen Kartierung, die allerdings noch einer statistischen Prüfung bedürfen, da die vollständige Auswertung und Konsistenzprüfung der mehr als 200.000 Einzeldaten dieser Erhebung noch nicht abgeschlossen ist, finden sich insofern ähnliche Tendenzen, als daß südlich der Elbe und in einigen der oben genannten Belastungsschwerpunkte eine teilweise erheblich höhere Anzahl opportunistischer Arten gefunden wird als in den übrigen Gebieten. Ohne damit korrelative Zusammenhänge zu unterstellen kann dies jedoch als ein den derzeitigen Stand der Kenntnis unterstützendes Argument angesehen werden, ein Schadstoffmonitoring zeitlich und örtlich parallel mit einem biologischen Bestandsmonitoring zu verbinden.

Neben den derzeit laufenden Vorhaben zur Ökosystemforschung (ÖSF) in den beiden Ländern Niedersachsen und Schleswig-Holstein ist besonders die TMEG (Trilateral Monitoring Expert Group) mit der Entwicklung koordinierter Monitoringprogramme für die Niederlande, Deutschland und Dänemark befaßt. Die Arbeit dieser Gruppe wird in der TWTF (Trilateral Waddensea Task Force) fortgesetzt werden, für deren Konzeption eine gegenseitige Beeinflussung mit den Ergebnissen der Ökosystemforschung vorgesehen ist (integrating concept of monitoring and research). Das GKSS Forschungszentrum ist mit mehreren Projekten, u.a. auch "Entwicklung von langfristigen Umweltbeobachtungsstrategien für das Benthos" sowohl an der ÖSF in Niedersachsen als auch in Schleswig-Holstein beteiligt. Ein derzeitiger Vorschlag zur Konzeption eines Schadstoffmonitoring im Watt auf der Basis der vorliegenden Untersuchung kann demnach nur einen integrativen Beitrag leisten.

Eine Aufteilung des Wattenmeeres in mehrere Teilgebiete erscheint dazu als sinnvoll, um die Entwicklung einzelner Belastungsschwerpunkte verfolgen zu können.

Derartige Teilgebiete könnten sein (Abb. 7.1):


- (1) Borkum-Baltrum (Emsnah)
- (2) Baltrum-Minsener Oog (Emsfern)
- (3) Innenjade-Jadebusen-Hoher Weg (bis zum Wattenhoch zwischen Mellum und Festland)
- (4) Hoher Weg -Neuwerk (Wattenhoch bis zur Weser, Weser beeinflußt)
- (5) Nordergründe-Eiderstedt (Elbe beeinflußt)
- (6) Süderaue-Amrum-Rantumbecken (stärker belastet, landfern)
- (7) Langeness-Hindenburgdamm (schwach belastet, landnah)
- (8) Gebiet nördlich des Hindenburgdammes

Innerhalb dieser Teilgebiete sollten sowohl lagestabile Schlickwatten als auch durch hochbioturbative Organismengesellschaften geprägte Mischwatten beprobt werden.

Schlickwatten gewährleisten durch ihren hohen Gehalt an organischem Material und feinkörnigem Anteil den Nachweis auch geringer Kontamination und sind zu definierbaren Zeiten stark mit Diatomeen besiedelt, die ein weites Spektrum unterschiedlicher Adaptationen aufweisen, so daß sowohl hoch sensible Arten als auch Opportunisten erfaßt werden können. Minimalareale zur quantitativen Beprobung dieser Arten, ihre Populationsdynamik und Autökologie sind soweit bekannt, daß natürliche Fluktuationen bei der Auswertung weitgehend berücksichtigt werden können. Die Zeit ihrer Blüte im Frühjahr und Herbst sollte wahlweise die Zeit der Beprobung bestimmen.

Durch dichte Arenicola-Siedlungen dominierte Mischwatten bilden hochdiverse Gesellschaften, so daß hier eine ausreichende Anzahl unterschiedlich adaptierter Arten auf mehreren Maßstabsebenen (Makro- und Meiofauna, Mikrobenthos) vorkommt, von denen viele die oben erwähnten Kriterien zur Beurteilung ihrer Siedlungsmuster erfüllen. Hohe Importraten organischen Materials, insbesondere von Phytoplankton, in das Sediment durch die hier besonders intensive Bioturbation können zu zeitlichen und örtlichen Belastungsschwerpunkten führen, die nicht unbedingt mit einer zum Probenahmezeitpunkt meßbaren Erhöhung des organischen Gehaltes verbunden sein muß, da ebenfalls die Remineralisationsraten sehr hoch sind.

Eine Beprobung sollte hier im Sommer oder Frühherbst bei eingetretener Stabilisierung der Populationen vor dem Beginn der Rastvögelwanderungen (Verschiebungen durch Fraßdruck) und nicht unbedingt "koordinatentreu", sondern im Zentrum der Organismengesellschaft

Abb. 7.1 Übersichtskarte über mögliche Teilgebiete innerhalb derer sowohl lagestabile Schlickwatten als auch durch hochbioturbative Organismengesellschaften geprägte Mischwatten beprobt werden sollten.

stattfinden.

Alle derartig beprobten Areale sollten über Decca oder GPS eingemessen und ihre biotische und abiotische Charakteristik in gleicher oder modifizierter Form des "standardisierten Streckenprotokolls" der Thematischen Kartierung beschrieben werden.

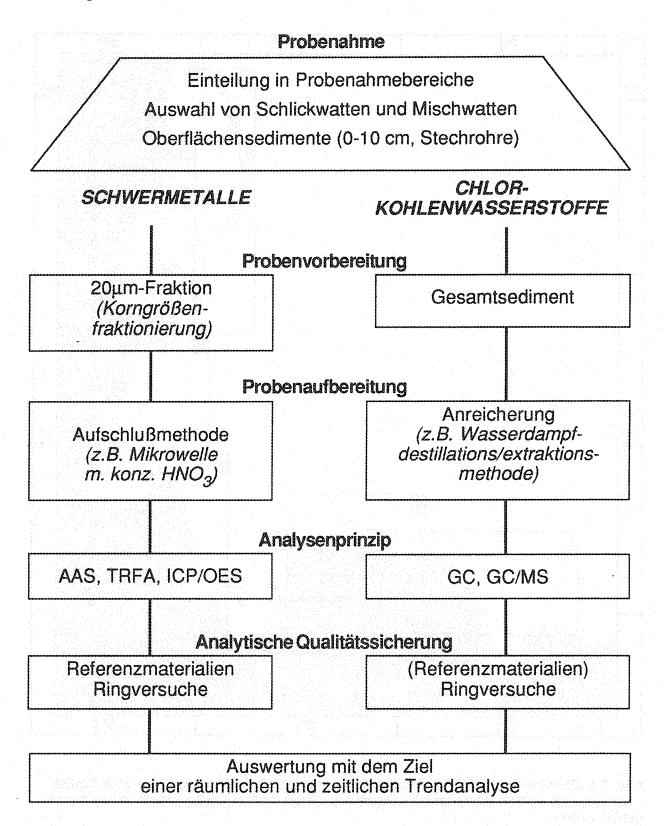


Abb. 7.2 Schematische Darstellung des Konzeptvorschlags zum Schadstoffmonitoring.

7. Zusammenfassung

Von Juni 1989 bis Juni 1992 wurden im Rahmen des Projekts "Schadstoffkartierung in Sedimenten des deutschen Wattenmeeres" die anorganischen und organischen Schadstoffe flächendeckend im Sediment des Wattenmeeres bestimmt. Die Schadstoffkartierung wurde unter Federführung des GKSS-Forschungszentrums durchgeführt und vom Umweltbundesamt (UBA, FuE-Vorhaben 109 03 377), dem Niedersächsischen Landesamt für Ökologie (NLÖ) und dem Landesamt für Wasserhaushalt und Küsten (LWK) mitfinanziert.

Ziel der Schadstoffkartierung war es, in Anlehnung an nationale (Gemeinsames Bund/Länder-Meßprogramm, BLMP) und internationale (Joint Monitoring Programme, JMP) Überwachungsprogramme der Nordsee die Verteilungsmuster der Schadstoffe nach Art und Konzentration darzustellen sowie deren Belastungsschwerpunkte im Wattengebiet festzustellen, um abschließend einen Konzeptvorschlag für ein Monitoring von anorganischen und organischen Schadstoffen im Sediment des Wattenmeeres zu erarbeiten. Hierfür wurde zunächst eine geeignete Probenentnahmestrategie entwickelt.

Die Auswahl der ca. 100 Probenorte für die Schadstoffkartierung erfolgte in Anlehnung an eine flächendeckende biologische und sedimentologische Kartierung der Wattgebiete ("Sensitivitätskartierung des gesamten deutschen Wattenmeeres", UBA-FuE-Vorhaben 102 04 232).

Die Probenahme für die Schwermetallanalyse und zur Bestimmung der Chlorkohlenwasserstoffe erfolgte im Umlagerungshorizont der Sedimente bis zu einer Tiefe von 7 bis 10 cm. Für die Schwermetallanalyse wurden je nach Sedimentart pro Probe 2 bis 5 Stechrohre (Acrylglas, Ø 2 cm) verwendet. Für die Chlorkohlenwasserstoff-Analyse wurden je 2 Stecher aus elektropoliertem V2a-Stahl (Ø 5,5 cm) verwendet. Die Proben wurden vor Ort unter Vermeidung von Kontamination verschlossen und umgehend tiefgefroren zwischengelagert.

Bei den untersuchten Wattsedimentproben handelt es sich bei ca. 60% der Proben um Sedimente des Sandwatts, bei ca. 30% um Sedimente des Mischwatts und nur bei ca. 10% um Sedimente des Schlickwatts.

Zur Bestimmung der Schadstoffe in den Wattsedimenten wurde die Probenaufbereitung optimiert und ein geeignetes Analysenverfahren zur routinemäßigen Bestimmung von Schadstoffen in den Wattsedimenten ausgearbeitet.

Die Schwermetallbestimmung wurde in der Sedimentfraktion <20µm mit Hilfe der Totalreflexions-Röntgenfluoreszenzanalyse (TRFA) und der Atomabsorptionsspektroskopie (AAS) durchgeführt und von der Instrumentellen Neutronenaktivierungsanalyse (INAA) unterstützt.

Im Rahmen von systematischen Untersuchungen wurde im Zusammenhang mit einer einfachen Probenaufbereitung (Mikrowellenaufschluß mit konz. HNO₃) ein Analysenverfahren ausgearbeitet bei dem die TRFA als zentrale Analysenmethode eingesetzt wird. Sie ermöglicht durch eine einfache Quantifizierung mit interner Ein-Element-Standardisierung eine Multielementbestimmung und damit die gleichzeitige Analyse nahezu aller geforderten Elemente wie Cr, Fe, Ni, Cu, Zn, As und Pb. Eine Bestimmung weiterer Elemente wie Ca, V, Mn, Ga, Rb, Sr und Y, die für eine anschließende Interpretation der Daten von zusätzlichem

Interesse sein könnten, war außerdem möglich. Cd und Hg wurden mit der AAS aus derselben Aufschlußlösung bestimmt. Die INAA wurde routinemäßig zur Analyse des Al-Gehalts der Sedimentproben eingesetzt.

Zur Beurteilung der Richtigkeit der Analysenergebnisse, d. h. zur Sicherung der Analysenqualität wurden die Elementkonzentrationen in einem Referenzmaterial bestimmt sowie die drei unabhängigen Analysenverfahren TRFA, AAS und INAA miteinander verglichen. Daraus ergab sich für die Richtigkeit der Analysenergebnisse ein Fehler von 5 bis 20%.

Zur Auswahl der geeigneten Korngrößenfraktion für die Routineanalysen im Rahmen der Schadstoffkartierung wurde die Schwermetallbestimmung an 12 ausgewählten Wattsediment-proben in den Fraktionen <20μm, 20-63μm, <63μm, >63μm und <2000μm (unfraktionierte Probe) durchgeführt. Die Ergebnisse dieser Untersuchung bestätigen, daß auch in den Wattsedimentproben die Schwermetalle überwiegend in der <20μm-Fraktion angereichert sind und nur zu einem geringen Anteil in den gröberen Sedimentfraktionen enthalten sind.

Die Schwermetallbestimmung wurde daher routinemäßig in der <20 μ m-Fraktion durchgeführt. Die Elementgehalte variieren in der <20 μ m-Fraktion im Bereich von mg/g für Aluminium, Kalzium und Eisen über μ g/g für Vanadium, Chrom, Mangan, Nickel, Kupfer, Zink, Gallium, Arsen, Rubidium, Strontium, Yttrium und Blei bis ng/g für Cadmium und Quecksilber.

Die <20µm-Fraktion der Wattsedimente enthält im Vergleich zu den "natürlichen Hintergrundskonzentrationen" geringe bis mittlere Gehalte an Chrom, Nickel und Kupfer. Die Zink, Arsen- und Bleigehalte sind vergleichsweise mittel bis stark erhöht. Die Cadmium- und Quecksilbergehalte sind in allen Wattsedimenten bezogen auf die "natürlichen Hintergrundgehalte" sehr stark erhöht. Beim Vergleich der Schwermetallgehalte in den Wattsedimenten mit den "natürlichen Hintergrundskonzentrationen" ergeben sich im Wattenmeer deutliche Belastungsschwerpunkte im Bereich der Flußmündungen von Elbe und Weser. Lokal stark erhöhte Schwermetallgehalte wurden auch im Ostfriesischen Watt und im Nordfriesischen Watt beobachtet.

Aufgrund der systematischen Untersuchungen von unterschiedlichen Aufarbeitungsmethoden zur qualitativen und quantitativen Bestimmung der schwerflüchtigen Chlorkohlenwasserstoffe in den unfraktionierten Wattenmeersedimenten wurde für die Routinanalysen im ersten Schritt der Anreicherung eine simultane Wasserdampf-Destillations-Extraktionsmethode (WDDE) eingesetzt. Der Extrakt wurde nach dem Entfernen störender Schwefelmengen und nach Behandlung mit konzentrierter Schwefelsäure auf wenige Milliliter eingeengt und gaschromatographisch untersucht. Zur gaschromatographischen Trennung wurden zwei Säulen unterschiedlicher Polarität verwendet. Die Bestimmung erfolgte mit einem Elektroneneinfangdetektor (ECD). Die Quantifizierung wurde mittels eines externen Standards durchgeführt.

Bei den organischen Schadstoffen wurden in dem unfraktionierten Sediment die folgenden Chlorkohlenwasserstoffe analysiert: Pentachlorbenzol (QCB) und Hexachlorbenzol (HCB), α - und γ -Hexachlorcyclohexan (HCH), Octachlorstyrol (OCS), p,p'-DDE, p,p'-DDD, p,p'-DDT und die polychlorierten Biphenyle Nr. 28+31, 52, 101, 118, 153+132+105, 138 und 180.

Bestimmt wurden die Konzentrationen an chlorierten Kohlenwasserstoffen (CKW) in der Trockenmasse. Da die Chlorkohlenwasserstoffgehalte eng mit dem organischen Kohlenstoffgehalt der Sedimente korreliert und daher überwiegend im Schlickwatt angereichert sind, wurden die Konzentration auf den organischen Kohlenstoff (TOC) normiert. Die unfraktionierten Sedimente aus dem Bereich des Jadebusen sind am höchsten von allen Regionen durch Chlorkohlenwasserstoffe belastet. Die polychlorierten Biphenyle (PCB) bilden dabei die Hauptbelastung in den untersuchten Wattgebieten. Lokal stark erhöhte Chlorkohlenwasserstoffgehalte wurden auch im Ostfriesischen Watt, in der Elbemündung und im Nordfriesischen Watt gefunden. Die Belastungsschwerpunkte für die untersuchten organischen Verbindungen sind in den Regionen festgestellt worden, die sich durch eine hohe Sedimentationsrate auszeichnen.

Das Belastungsmuster ist abhängig vom Beprobungsort. In dem Wattgebiet der Elbemündung tritt überwiegend HCB, DDD und PCB 52 auf, während das eigentliche Wattenmeer bevorzugt mit höherchlorierten PCB-Kongeneren belastet ist.

Basierend auf den Ergebnissen der Schadstoffkartierung sowie ersten Erkenntnissen aus der zeitgleich aufgenommenen biologischen Kartierung wurde ein Konzeptvorschlag für ein Schadstoffmonitoring in den eulitoralen Sedimenten des deutschen Wattenmeeres ausgearbeitet.

a belgastasakak and as belgere isekik, bal elebarasak darik sada a 19 dag as belgas akak bi

8. Literatur 3 inches par and the rest relative data of the rest of the second of the

- [1] Nationalparkverwaltung Niedersächsisches Wattenmeer: Nationalpark Niedersächsisches Wattenmeer. 1988, Wilhelmshaven.
- [2] Landesamt für den Nationalpark Schleswig-Holsteinisches Wattenmeer: Nationalpark Schleswig-Holsteinisches Wattenmeer. 1989, Tönning.
- [3] H.-E. Reineck: Die Watten der deutschen Nordseeküste. Die Küste 1980, 35, 66.
- [4] H.-E. Reineck: Das Watt Ablagerungs- und Lebensraum. Kramer, Frankfurt am Main 1982, Kap. 6, 173.
- [5] Der Rat von Sachverständigen für Umweltfragen: Umweltprobleme der Nordsee. Kohlhammer, Stuttgart 1980.
- [5a] G. Ludwig und K. Figge: Schwermineralvorkommen und Sandverteilung in der Deutschen Bucht. Geologisches Jahrbuch 1979, D 32, 23.
- [6] W. Salomons, B. L. Bayne, E. K. Duursma und U. Förstner: Pollution of the North Sea An Assessment. Springer, Berlin 1988.
- [7] J. L. Lozán, W. Lenz, E. Rachor, B. Watermann und H. v. Westernhagen: Warnsignale aus der Nordsee. *Parey, Berlin* 1990.
- [8] E. Schwedhelm und G. Irion: Schwermetalle und Nährelemente in den Sedimenten der deutschen Nordseewatten. Courier Forschungsinstitut Senckenberg 1985, 73, 1.
- [9] E. Schwedhelm und G. Irion: Heavy Metal Distribution in Tidal Flat Sediments of the German Part of the North Sea. Proc. Int. Conf. "Heavy Metals in the Environment", CEP Consultants Ltd., Edinburgh 1983, 1037.
- [10] National Forest and Nature Agency, the Ministry of the Environment, Denmark and The Common Wadden Sea Secretariat: The Wadden Sea status and developments in an international perspective. Report to the Sixth Trilateral Governmental Conference on the Protection of the Wadden Sea, Esbjerg 1991.
- [11] H. Thiel, M. Kaiser, J. Lade, H. Marencic und D. Lorch: Vergleichende Untersuchungen über die Eignung von Wattorganismen unterschiedlicher Trophiestufen zum Trendmonitoring ausgewählter Schwermetalle und polychlorierter Biphenyle. Texte Umweltbundesamt 1992, 15/92.
- [12] J. Meyercordt: Untersuchungen zum langjährigen Verlauf von Schwermetalldepositionen in ausgewählten schleswig-holsteinischen Salzmarschen auf der Bais von Radionuklidmessungen. Dissertation, Universität Hamburg 1992 und GKSS-Bericht (in Vorbereitung).
- [13] K.-H. Runte und R. Köster: Repräsentanz von Beprobungen im Wattenmeer aus sedimentologischer Sicht. GKSS-Hochschulforschungsprogramm 513 697, Universität Kiel 1992.
- [14] C. Schmidt: Raumzeitliche Schwankungen von Schwermetallgehalten in Wattsedimenten am Beispiel eines Testfeldes vor dem Hedwigenkoog / Büsum. Diplomarbeit, Universität Kiel 1992.
- [15] Anonymous: Twelfth Annual Report on the Activities of the Oslo Commission, Fifteenth Meeting of the Joint Monitoring Group JMG 15 6/6-E 1990.

- [16] Anonymous: Gemeinsames Bund/Länder-Meßprogramm für die Nordsee Gewässergütemessungen im Küstenbereich der Bundesrepublik Deutschland 1982/1983, Hannover 1984.
- [17] Anonymous: Gemeinsames Bund/Länder-Meßprogramm für die Nordsee Gewässergütemessungen im Küstenbereich der Bundesrepublik Deutschland 1984/1985, Hannover 1987.
- [18] Anonymous: Gemeinsames Bund/Länder-Meßprogramm für die Nordsee Gewässergütemessungen im Küstenbereich der Bundesrepublik Deutschland 1986/1987, Hannover 1989.
- [19] Anonymous: Gemeinsames Bund/Länder-Meßprogramm für die Nordsee Gewässergütemessungen im Küstenbereich der Bundesrepublik Deutschland 1988/1989, Hannover 1991.
- [20] K.-H. van Bernem, A. Müller und J. Dörjes: Environmental Oil Sensitivity of the German North Sea Coast. Proceedings Oil Spill Conference, 20th Anniversary Conference, San Antonio, Texas, Amer. Pet. Inst. Publ. No. 4479. Washington, DC: American Petroleum Inst. 1989, 239.
- [21] K.-H. van Bernem: Umweltgespräche Niedersachsen: Gütekriterien für Küstengewässer-Statusseminar. Niedersächsisches Umweltministerium, Hannover 1989.
- [22] Bundesamt für Seeschiffahrt und Hydrographie: Internationale Kartenserie "Nordsee, Deutsche und Niederländische Küste - Borkum bis Neuwerk und Helgoland" INT 1413 87 1990, 27/1990.
- [23] Bundesamt für Seeschiffahrt und Hydrographie: Internationale Kartenserie "Nordsee, Deutsche und D\u00e4nische K\u00fcste Helgoland bis R\u00f6m\u00f6", INT 1412 103 1990, 29/1990.
- [24] S. Little-Gadow: Sedimente und Gefüge. In: H.-E. Reineck (Hrsg.): Das Watt Ablagerungs- und Lebensraum. Kramer, Frankfurt am Main 1982, Kap. 3, 51.
- [25] F. Ackermann, H. Bergmann und U. Schleichert: Monitoring of Heavy Metals in Coastal and Estuarine Sediments A Question of Grain-Size. <20μm versus <60μm. Environmental Technology Letters 1983, 4, 317.
- [26] E. Merian (Hrsg.): Metals and Their Compounds in the Environment. VCH, Weinheim 1991
- [27] W. Salomons und U. Förstner: Metals in the Hydrocycle. Springer, Berlin 1984, Kap. 3, 69.
- [28] C. Koopmann und A. Prange: Multielement Determination in Sediments from the German Wadden Sea Investigations on Sample Preparation Techniques. Spectrochimica Acta 1991 46B, 1395.
- [29] A. Prange und H. Schwenke: Trace Element Analysis using Total-Reflection X-Ray Fluorescence Spectrometry. Advances in X-Ray Analysis 1992, 35, 899.
- [30] D. Steffen: Die Bedeutung der Feinkornfraktion in niedersächsischen Küstensedimenten bei Schwermetalluntersuchungen. Wasser + Boden 1986, 12, 623.
- [31] D. H. Loring: Normalization of Heavy-Metal Data from Estuarine and Coastal Sediments. *ICES Journal Marine Science* 1991 48, 101.

- [32] K. K. Turekian und K. H. Wedepohl: Distribution of the Elements in Some Major Units of the Earth's Crust. Geological Society of America Bulletin 1961, 72, 175.
- [33] K. H. Wedepohl: The Composition of the Upper Earth's Crust and the Natural Cycles of Selected Metals. Metals in Natural Raw Materials. Natural Resources. In: E. Merian (Hrsg.): Metals and Their Compounds in the Environment. VCH, Weinheim 1991, Kap. I.1, 3.
- [34] U. Förstner und H.-E. Reineck: Die Anreicherung von Spurenelementen in den rezenten Sedimenten eines Profilkerns aus der Deutschen Bucht. Senckenbergiana maritima 1974, 6, 175.
- [35] R. Lichtfuß und G. Brümmer: Natürlicher Gehalt und anthropogene Anreicherung von Schwermetallen in den Sedimenten von Elbe, Eider, Trave und Schwentine. Catena 1981, 8, 251.
- [36] Arbeitsgemeinschaft für die Reinhaltung der Elbe:Schwermetalldaten der Elbe 1984-1988 1988.
- [37] U. Förstner: Bewertung sedimentbezogener Maßnahmen in Ästuar- und Küstengewäsern der Bundesrepublik Deutschland. Wasser + Boden 1990, 8, 508.
- [38] G. Müller: Schwermetalle in den Sedimenten des Rheins Veränderungen seit 1971. Umschau 1979 79, 778.
- [39] Anonymous: Untersuchung des Unterwasserbodens Zwischenbericht der Arbeitsgruppe "Beurteilung und Normung". Tischvorlage zur 57. Sitzung der Arbeitsgruppe Baggergut 1986.
- [40] H. J. van Veen und P. B. M. Stortelder: Erforschung belasteter Sedimente in den Niederlanden. In: K. H. Wolf, W. J. van den Brink und F. J. Colon (Hrsg.): Altlastensanierung '88. Kluwer Academic Publ. 1988, 1297.
- [41] R. Sturm, H.-D. Knauth, K. H. Reinhardt und J. Gandraß: Chlorkohlenwasserstoff-Verteilung in Sedimenten und Schwebstoffen der Elbe. In: Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker (Hrsg.): Vom Wasser. VCH, Weinheim 1986, 67, 23.
- [42] H. Hellmann: Analytik von Oberflächengewässern. Georg Thieme, Stuttgart 1986.
- [43] R. Knickmeyer und H. Steinhart: Cyclic Organochlorines in North Sea Sediments, Relation with Size and Organic Matter. Deutsche Hydrographishe Zeitschrift 1989, 42, 43.
- [44] K. J. M. Kramer, R. Misdorp und R. Duijts: Contaminants in Sediments of North Sea and Wadden Sea. MT-TNO/RWS-DWG Report. GWWS 90.011, The Hague 1989.
- [44a] R.W.P.M. Laane: Background Concentrations of Natural Compounds in Rivers, Sea Water, Atmosphere and Mussels. *Ministry of Transport, Public Works and Water Management. Report DGW-92.003, The Hague* 1992.
- [45] G. D. Veith und L. M. Kiwus: An Exhaustive Steam-Distillation and Solvent-Extraction Unit for Pesticides and Industrial Chemicals. *Bulletin Environmental Contamination & Toxicology* 1977, 17, 631.
- [46] R. Sturm, J. Gandraß, H.-D. Knauth und R.-D. Behling: Schwerflüchtige Chlorkohlenwasserstoffe an Schwebstoffen im Flußmündungsgebiet von Weser und Elbe. GKSS-Jahresbericht 1989, 21.

- [47] J. C. Duinker, D. E. Schulz und G. Petrick: Selection of Chlorinated Biphenyl Congeners for Analysis in Environmental Samples. *Marine Pollution Bulletin* 1988, 19, 19.
- [48] R. Sturm und J. Gandraß: Verhalten von schwerflüchtigen Chlorkohlenwasserstoffen des Elbe-Ästuars. In: Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker (Hrsg.): Vom Wasser. VCH, Weinheim 1988, 70, 265 und GKSS 88/E/35 1988.
- [49] H.-D. Knauth, R. Sturm und P. Milde: Teilgutachten "Beurteilung des Gütezustandes des Weserästuars". GKSS 90/E/42 1990.
- [50] D. Steffen: Organochlorpestizide und PCB in Sedimenten des tideabhängigen Bereiches von Weser, Ems und Jadebusen. Wasser + Boden 1992, 4, 231.
- [51] J. Lohse: Herkunft, Ausbreitung und Verteilung von schwerflüchtigen Chlorkohlenwasserstoffen im Sediment der Nordsee. Dissertation, Universität Hamburg 1988 und Ocean Incirneration of Toxic Wastes: a Footprint in North Sea Sediments. Marine Pollution Bulletin 1988, 19, 366.
- [52] D. Prats, F. Ruiz und D. Zarzo: Polychlorinated Biphenyls and Organochlorine Pesticides in Marine Sediments and Seawater Along the Coast of Alicante, Spain. *Marine Pollution Bulletin*, **1992**, 24(9), 441.
- [53] B. Schubert (BfG, Bundesanstalt für Gewässerkunde): pers. Mitteilung 1992.
- [54] W. Ernst: Eine neue Verbrennungs-IR-Methode zur Mikrobestimmung von organischem Kohlenstoff in marinen Sedimenten. Veröffentlichungen des Instituts für Meeresforschung Bremerhaven, 1992, 15, 269.

9. Anhang

Tab. 9.1 Abkürzungsverzeichnis

AAS - Atomabsorptionsspektroskopie

BLMP - Bund/Länder-Meßprogramm

CBs - Summe der Konzentrationen von HCB und QCB

CKW - chlorierte Kohlenwasserstoffe

C_{org.} - organischer Kohlenstoff (siehe auch TOC)

ECD - Electron-Capture-Detector, Elektroneneinfangdetektor

DDE - 1,1-Dichlor-2,2-bis(4-chlorphenyl)-ethen

DDD - 1,1-Dichlor-2,2-bis(4-chlorphenyl)-ethan

DDT - 1,1,1-Trichlor-2,2-bis(4-chlorphenyl)-ethan

sDDT - Summe der Konzentrationen von DDE, DDD und DDT

INAA - Instrumentelle Neutronenaktivierungsanalyse

HCB - Hexachlorbenzol

HCH - Hexachlorcyclohexan

JMP - Joint Monitoring Programme

K_{ow} - Verteilungskoeffizient Octanol/Wasser

OCS - Octachlorstyrol

PCB - polychorierte Biphenyle

QCB - Pentachlorbenzol

RP - reversed phase

sDDT - Summe der Konzentrationen von DDE, DDD und DDT

sPCB - Summe der Konzentrationen von allen untersuchten PCB

TM - Trockenmasse

TOC - total organic carbon, gesamter organischer Kohlenstoff

TRFA - Totalreflexions-Röntgenfluoreszenzanalyse

WDDE - Wasserdampfdestillations-Extraktionsmethode

Water Care

Tab. 9.2 Kennzeichnung der Probenahmeorte der Schadstoffkartierung

Kennzeichnung	Probenort
AM	Amrum
В	Büsum
BA	Baltrum
ВО	Borkum
DA	Dagebüll
	Elbe
ES	Ewersand
FO	Föhr
HS	Hooksiel
HW	Hoher Weg
JВ	Jadebusen
JU .	Juist
KS	Knechtsand
LN	Langeness
LA	Langeoog
LLS	Langlütjensand
ME	Alte Mellum
МО	Minsener Oog
NH	Norderhever
NO	Norderney
NS	Nordstrand
NW	Neuwerk
PW	Pellworm
SP	Spiekeroog
SY	Sylt
$\mathbf{\hat{f}}$	Trischen
WA	Wangerooge

Tab. 9.3 Koordinaten der Probenahmeorte.

Schadstoffkartierung 1989 bis 1991

Lfd	Proben-Nr.	Koord	inaten	Lfd.	Proben-Nr.	Koord	inaten
Nr.	A 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N	E	Nr.		N	E
1	BO 390/90	53-35,27	06-44,68		JB 2/89	53-30,02	08-07,62
. 779	JU 122/90	53-36,45	07-04,00	1 10000	JB 5/89	53-29,42	08-04,50
	JU 135/90	53-37,74	07-08,61		JB 12/89	53-29,92	08-10,86
	JU 142/90	53-39,07	07-03,59	1 1 1 1 1 1 1	JB 17/89	53-28,59	08-09,57
	JU 198/90	53-38,91	06-59,76		JB 25/89	53-28,46	08-04,83
	JU 198/91	53-38,90	06-59,80		JB 28/89	53-28,09	08-08,05
	JU 254/90	53-36,84	07-08,18		JB 32/89	53-28,15	08-11,30
-	JU 265/90	53-35,19	07-03,11	49	JB 38/89	53-26,69	08-10,57
1 1 1 1	JU 289/90	53-31,08	07-05,70		JB 42/89	53-30,28	08-11,99
1976	JU 317/90	53-29,00	07-00,80		JB 44/89	53-30,66	08-11,47
	JU 317/91	53-29,00	07-00,80	# 1 1 1 W	JB 47/89	53-29,40	08-14,00
4.2	NO 30/90	53-41,80	07-16,09		JB 48/89	53-25,52	08-11,83
17.00	NO 47/90	53-41,18	07-15,45		JB 54/89	53-27,18	08-12,52
	NO 61/90	53-40,12	07-12,76	55	JB 56/89	53-27,57	08-07,74
	NO 78/90	53-40,17	07-09,41	56	JB 58/89	53-26,99	08-14,70
	BA 3/90	53-42,92	07-23,65	1	JB 61/89	53-25,67	08-13,18
	BA 9/90	53-41,62	07-23,78	58	JB 66/89	53-28,78	08-06,41
100	BA 13/90	53-42,34	07-25,98	59	JB 75/89	53-26,50	08-16,81
4.3	BA 23/90	53-42,29	07-22,31	60	JB 79/89	53-27,35	08-18,15
	BA 264/90	53-41,51	07-27,32	61	JB 87/89	53-28,95	08-17,67
	LA 246/90	53-44,22	07-32,0	62	JB 92/89	53-29,72	08-18,71
22	LA 259/90	53-42,85	07-37,77	63	JB 103/89	53-30,77	08-16,59
23	LA 264/90	53-41,52	07-27,41	64	JB 110/89	53-24,45	08-14,59
24	LA 278/90	53-41-45	07-34,32	65	LLS 10/90	53-38,50	08-24,50
25	SP 2/90	53-43,49	07-40,27	66	LLS 15/90	53-33,05	08-32,20
26	SP 14/90	53-45,27	07-44,34	67	LLS 50/90	53-34,55	08-28,25
27	SP 36/90	53-44,23	07-48,37	68	ES 20/90	53-44,25	08-26,03
28	WA 351/90	53-46,58	07-54,50	69	KS 17/90	53-49,02	08-27,51
29	WA 351/91	53-46,58	07-54,50	70	NW 76/90	53-54,38	08-31,39
30	MO 363/90	53-43,97	08-01,66	71	E 9/91	53-54,51	08-55,72
	HS 96/90	53-39,00	08-04,43	72	E 28/91	53-54,53	08-49,79
. 15 14	ME 209/90	53-42,52	08-08,43	73	T 255/89	54-02,08	08-45,89
33	HW 113/89	53-32,26	08-13,60	74	T 262/89	54-01,32	08-47,21
	HW 115/90	53-40,32	08-12,58		T 280/89	53-58,01	08-47,90
100	HW 116/89	53-33,06	08-12,39	76	T 346/91	54-03,92	08-40,60
	HW 124/89	53-34,65	08-13,15	77	T 350/91	53-58,53	08-40,44
	HW 137/89	53-36,05	08-12,65	78	B 93/89	54-03,82	08-46,67
	HW 158/90	53-38,42	08-18,18	79	B 166/91	54-10,72	08-39,47
39	HW 162/90	53-37,04	08-20,19	80	B 204/91	54-14,35	08-45,90
40	HW 187/90	53-42,88	08-15,08	81	B 218/91	54-16,35	08-46,77
	HW 187/91	53-42,88	08-15,08	82	B 238/89	54-16,38	08-47,69

Tab. 9.3 (Forts.) Koordinaten der Probenahmeorte.

Schadstoffkartierung 1989 bis 1991

(Einige Proben wurden 1987 mit einer etwas anderen Probenahmetechnik genommen).

Lfd.	Proben-Nr.	Koord	linaten
Nr.		N	E
83	B 249/89	54-03,23	08-43,94
84	B 403/89	54-05,17	08-45,00
85	B 411/91	53-59,46	08-45,07
86	B 414/89	54-04,64	08-43,41
87	B 543/91	54-24,49	08-43,40
88	NS 319/91	54-34,70	08-51,08
89	NS 320/91	54-32,70	08-47,31
90	NS 335/91	54-30,75	08-58,75
91	PW 233/91	54-27,92	08-41,10
92	PW 297/91	54-32,55	08-42,99
93	PW 306/91	54-31,99	08-34,75
94	PW 340/91	54-25,05	08-41,10
95	NH 294/87	54-31,22	08-43,45
96	LN 266/91	54-39,64	08-46,28
97	DA 252/87	54-40,50	08-42,92
98	AM 208/87	54-38,71	08-24,78
99	AM 208/91	54-38,71	08-24,78
100	AM 212/91	54-39,25	08-25,76
101	AM 215/87	54-42,00	08-22,17
102	AM 215/91	54-42,00	08-22,17
103	AM 223/87	54-38,75	08-23,00
104	AM 223/91	54-38,77	08-23,00
105	AM 229/87	54-40,23	08-22,84
106	AM 235/91	54-37,27	08-23,97
107	FO 94/91	54-42,89	08-37,50
	FO 102/91	54-45,51	08-25,38
109	FO 132/91	54-41,19	08-40,36
1	FO 167/91	54-47,15	08-35,41
	FO 180/91	54-44,37	08-40,70
	FO 198/91	54-38,56	08-28,80
1	SY 1/91	54-48,86	08-26,96
	SY 2/90	55-02,58	08-24,34
	SY 5/90	55-02,33	08-26,32
1	SY 7/91	54-49,39	08-21,55
} :	SY 15/91	54-51,29	08-18,65
1	SY 21/90	54-53,50	08-23,40
1	SY 41/87	54-53,34	08-31,95
	SY 48/91	54-47,67	08-18,30
1	SY 50/87	54-46,81	08-18,11
122	SY 161/91	54-51,48	08-36,07

Tab. 9.3 (Forts.) Koordinaten der Probenahmeorte.

Gemeinsamen Bund/Länder-Meßprogramms (1984 bis 1989)

Kennzeichnung	Probenort	Koord	linaten
		N	E
Bor	Borkum	53-35,30	06-46,60
Bor	Borkum	53-35,80	06-45,90
Bor	Borkum	53-35,90	06-45,70
Ley	Leybucht	53-31,60	07-07,00
Ley	Leybucht	53-32,60	07-07,10
Nor	Norderney	53-42,10	07-14,30
Spi	Spiekeroog	53-45,50	07-43,10
Spi	Spiekeroog	53-45,80	07-43,10
Spi	Spiekeroog	53-45,90	07-43,10
Éli	Elisabethgroden	53-43,10	07-56,30
Wan	Wangerooge	53-47,00	07-52,30
Hoh	Hoher Weg	53-36,50	08-16,50
Jad	Jadebusen	53-25,90	08-10,50
Tet	Tettens	53-33,30	08-29,70
Dor	Dorum	53-46,00	08-31,50
Neu (Sah)	Sahlenburger Watt	53-52,10	08-34,40
Neu (N I)	Neuwerk I	53-54,80	08-30,90
Neu (NII)	Neuwerk II	53-54,80	08-29,00
Neu (Cux)	Cuxhaven Kugelbake	53-53,50	08-41,20
Neu (Duh)	Duhner Watt	53-54,10	08-38,30
Tri	Trischendamm	54-01,40	08-48,50
Büs	Büsumer Watt	54-09,50	08-47,00
Hev	Heverstom / Südfall	54-28,00	08-45,00
Lan	Langeness / Norderaue	54-39,00	08-37,00
Ola	Oland	54-42,00	08-43,00

Joint Monitoring Programme

Kennzeichnung	Probenort	Koordinaten						
		N	E					
JMP 1	Knechtsand	53-46,10	08-32,10					
JMP 2	Juist	53-37,43	06-52,40					
JMP 3	Borkum	53-32,28	06-41,42					
JMP 5	Trischen	54-01,40	08-50,10					
JMP 7	Neuwerk	53-53,40	08-41,20					
JMP 9	Hoher Weg	53-37,00	08-18,00					

Tab. 9.4 Korngrößenverteilung der Wattsedimente.

Proben-Nr.	Watt Typ	K K	Korngrößenanteil, Gew%								
) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<20µm	20-63µm	63-200μm	>200µm						
BO 390	Sandwatt	1	1	77	21						
JU 122	Sandwatt	- 1 × 1	1.	97	1						
JU 135	Sandwatt	3	3	94	0						
JU 142	Sandwatt	1	0	97	2						
JU 198	Sandwatt	1	0	82	17						
JU 198	Sandwatt	2	1	91	6						
JU 254	Sandwatt	5	4.	91	0						
JU 265	Sandwatt	1	1	92	6						
JU 289	Schlickwatt	.76	22	2	0						
JU 317/90	Sandwatt	3	2	93	2						
JU 317/91	Sandwatt	6	4	86	4						
NO 30	Mischwatt	27	9	63	1						
NO 47	Sandwatt	6	4	85	5						
NO 61	Mischwatt	8	7	83	2						
NO 78	Sandwatt	1	2	64	33						
BA 3	Sandwatt	1	0	75	24						
BA 9	Mischwatt	8	5	86							
BA 13	Sandwatt	4	4	91							
BA 23	Sandwatt	1	0	85	14						
BA 264	Sandwatt	4	4	92	(
LA 246	Sandwatt	6	2	46	40						
LA 259	Mischwatt	8	5	83	4						
LA 264	Sandwatt	1	0	66	33						
LA 278	Mischwatt	12	12	75							
SP 2	Sandwatt	5	3	65	2						
SP 14	Mischwatt	28	16	53							
SP 36	Sandwatt	2	1	92	91						
WA 351 / 90	Sandwatt	0	0	28	72						
WA 351/91	Sandwatt	0	0	24	70						
MO 363	Sandwatt	1	0	97							
HS 96	Schlickwatt	47	35	18	1 3.0						
ME 209	Sandwatt	1	0	78	2						
HW 113	Mischwatt	5	8	86							
HW 115	Sandwatt	2	1	96							
HW 116	Sandwatt	1	1	96							
HW 124	Sandwatt	2	4	94	\$ 3						
HW 137	Sandwatt	1	1	97							
HW 158	Mischwatt	12	14	73							
HW 162	Sandwatt	3	6	91	i Arad						
HW 187 / 90	Sandwatt	1	0	97							
HW 187/91	Sandwatt	1	0	98	Te begande de la grande e la la fili						

Tab. 9.4 (Forts.) Korngrößenverteilung der Wattsedimente.

Proben-Nr.	Watt Typ	Korngrößenanteil, Gew%										
	filozofia (zaleki) azirki	<20µm	20-63μm	63-200µm	>200µm							
JB 2	Schlickwatt	60	25	15	0							
JB 12	Mischwatt	24	17	59	0							
JB 17	Mischwatt	8	5	86	1							
JB 25	Schlickwatt	89	11	1 April 10	0							
JB 38	Schlickwatt	90	8	2	0							
JB 42	Sandwatt	2	2	96	0							
JB 54	Mischwatt	12	13	31 (15 min) 75	0							
JB 61	Mischwatt	17	18	64	1							
JB 75	Mischwatt	22	9	69	0							
JB 79	Mischwatt	17	10	72	1 10 701							
JB 87	Sandwatt	4	1	95	0							
JB 103	Mischwatt	29	10	60	44.1							
LLS 10	Sandwatt	1	1	98	0							
LLS 15	Mischwatt	8	15	(1995), 1995, 1 77	0 (
LLS 50	Mischwatt	6	13	81	0							
ES 20	Sandwatt	1	1	98	0							
KS 17	Sandwatt	2	1 5	97	0							
NW 76	Sandwatt	1 1 0	0	91	8							
E 9	Mischwatt	30	6	64	0							
E 28	Sandwatt	1	0	97	2							
T 255	Sandwatt	1	2	94	3							
T 262	Sandwatt	1	1	97	1							
T 280	Sandwatt	4	5	90	i said							
T 346	Sandwatt	2	0	93	5							
Т 350	Sandwatt	0	0	5. de 1. de ve j	29							
B 93	Sandwatt	2	4	92	2							
B 166	Sandwatt	1 1	0	97								
B 204	Sandwatt	5	10	94	•							
B 218	Mischwatt	10	5	85) 40 m of C							
B 238	Mischwatt	3	9	88	0							
B 249	Sandwatt	1	1	96	2							
B 403	Sandwatt	2	3	94								
B 411	Sandwatt	5	2	92								
B 414	Sandwatt	1	1	97	1							
B 543	Schlickwatt	29	33	37								
NS 319	Sandwatt	2	0	98	(
NS 320	Schlickwatt	33	24	42	7.1.3							
NS 335	Schlickwatt	65	23	12								
NH 294	Sandwatt	3	3	59	3.5							
PW 233	Mischwatt	8	17	74	ver that M							

Tab. 9.4 (Forts.) Korngrößenverteilung der Wattsedimente.

Proben-Nr.	Watt Typ	Korngrößenanteil, Gew%										
		<20µm	20-63μm	63-200μm	>200μm							
PW 297	Sandwatt	7	1	90	2							
PW 306	Sandwatt	9		87	3							
PW 340	Sandwatt	0		70	29							
LN 266	Sandwatt	4	0	96	0							
DA 252	Mischwatt	12	8	79	1							
AM 208 / 87	Sandwatt	0	0	30	70							
AM 208/91	Sandwatt	0	0	47	53							
AM 212	Sandwatt	4	0	61	35							
AM 215 / 87	Sandwatt	5	4	43	48							
AM 215/91	Sandwatt	6		50	43							
AM 223 / 87	Sandwatt	6	5	39	50							
AM 223/91	Sandwatt	12	2	52	34							
AM 229	Sandwatt	1	4	76	19							
AM 235	Sandwatt	0	0	17	83							
FO 94	Sandwatt	1	0	87	12							
FO 102	Sandwatt	0	0.	62	38							
FO 132	Sandwatt	2	4 v 1	96	1							
FO 167	Sandwatt	2	1	96	1							
FO 180	Sandwatt	4	0	95	1							
FO 198	Sandwatt	0	0	85	15							
SY1	Sandwatt	0	0	91	8							
SY 2	Sandwatt	1	0	92	7							
SY 5	Sandwatt		0	37	62							
SY 7	Sandwatt	0	0	79	21							
SY 15	Schlickwatt	68	2	29	1							
SY 21	Mischwatt	26	24	47	3							
SY 41	Sandwatt	1	1	36	62							
SY 48	Sandwatt	0	0	12	88							
SY 50	Sandwatt	1	0	5	94							
SY 161	Schlickwatt	8	57	34								

Tab. 9.5 Elementgehalte in der <20µm-Fraktion der Wattsedimente (n.a.: nicht analysiert, da zuwenig Probenmaterial vorhanden war).

Proben-	Jahr der	org. C	Al I	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn	Ga	As	Rb	Sr	87 1	O.	77 1	737
Nr.	Beprobung	[%]	[%]	[%]	[μg/g]	[μg/g]	[μg/g]	[%]	[μg/g]	i						Y [va/a]	Cd	Hg	Pb
BO 390	1990	3.18	6.09	4.70	120	114	596	3.84	148 81 48	<u>τμε/ει</u> 27	[μg/g] 209	ιμ <u>α/g)</u> 16	[μg/g] 27	[μg/g] 130	[µg/g]	[μg/g]	[µg/g]		[µg/g]
JU 122	1990	3.56	7.73	3.59	139	134	543	4.19	54	26	249	19	28	137	329 241	28	0.86	0.44	71
JU 135	1990	2.67	6.35	3.63	109	118	574	3.71	43	21	213	14	26	112	241	30 29	1.23 1.21	0.38	89 71
JU 142	1990	3.15	7.72	2.67	120	126	533	3.97	47	28	232	16	20 27	112	190	29 25		0.45	
JU 198	1990	5.11	7.51	2.43	156	139	531	4.07	51	32	304	17	35	127	190	25 25	1.30 1.44	0.37 0.32	76
JU 198	1991	4.52	6.87	4.66	170	134	549	3.94	59	25	216	17	30	141	260	29	0.92	0.32	124 73
JU 254	1990	2.85	6.16	4.54	121	116	535	3.90	43	23	232	16	29	118	257	26	1.26	0.47	74
JU 265	1990	2.58	6.73	3.51	131	124	430	3.65	42	23	216	15	23	120	192	23	1.06	0.33	68
JU 289	1990	3.45	5.98	5.13	105	112	1098	3.73	42	24	196	14	31	102	290	20	0.83	0.42	63
JU 317	1990	3.25	6.22	4.32	146	127	878	4.53	44	27	298	15	42	119	287	26	0.96	0.43	141
JU 317	1991	4.55	6.62	5.26	158	162	1223	4.60	56	26	244	18	36	139	300	27	0.84	0.47	85
NO 30	1990	2.41	5.66	4.87	105	89	546	3.14	43	19	163	12	25	98	238	20	0.51	0.41	55
NO 47	1990	3.38	5.05	4.45	100	89	321	2.53	38	18	177	11	18	83	208	19	0.95	0.37	47
NO 61	1990	1.36	4.96	4.77	92	83	325	2.54	39	15	144	10	15	81	220	17	0.66	0.32	44
NO 78	1990	1.74	4.34	3.41	75	74	358	1.96	37	10	117	8	10	63	148	14	0.49	0.19	35
BA 3	1990	n.a.	5.49	3.68	143	138	340	3.80	48	30	321	14	45	108	187	24	2,32	0.48	117
BA 9	1990	2.69	5.85	5.18	132	108	357	3.29	43	23	210	14	22	106	266	26	1.11	0.41	69
BA 13	1990	2.92	5.13	5.17	123	96	367	2.71	39	20	203	12	19	82	224	21	1.32	0.35	64
BA 23	1990	n.a.	5.62	3.45	132	111	322	3.12	42	20	217	12	17	95	160	24	1.14	0.34	73
BA 264	1990	3.01	6.17	4.85	132	127	521	3.69	43	23	273	15	27	109	253	25	1.84	0.45	82
LA 246	1990	3.16	5.46	5.52	100	105	518	2.92	37	19	187	12	21	95	277	21	1.03	0.33	60
LA 259	1990	2.62	5.77	5.81	126	121	397	3.37	44	25	250	13	22	101	258	21	1.37	0.46	71
LA 264	1990	4.73	6.24	4.01	138	135	343	3.74	54	36	324	14	54	108	217	21	1.86	0.60	113
LA 278	1990	2.09	5.13	6.64	118	119	396	3.49	45	23	206	14	20	106	299	23	0.87	0.28	66
SP 2	1990	3.39	5.80	4.77	121	105	430	3.38	40	19	187	14	24	111	271	23	0.85	0.38	63
SP 14	1990	3.27	6.33	3.81	113	96	510	3.72	47	24	199	17	29	128	300	28	0.89	0.31	78
SP 36	1990	3.18	5.97	4.39	119	120	444	3.63	48	23	227	14	29	108	267	21	1.34	0.38	83
WA 351	1990	n.a.	6.27	3.42	187	152	390	4.20	50	48	308	16	99	126	215	38	1.66	0.30	108
WA 351	1991	n.a.	6.12	4.65	185	153	580	4.30	57]	31	263	17	76	134	314	30	1.02	0.38	89

Tab. 9.5 (Forts.) Elementgehalte in der <20µm-Fraktion der Wattsedimente (n.a.: nicht analysiert, da zuwenig Probenmaterial vorhanden war).

Proben-	Jahr der	org. C	Al	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Cd	Hg	Pb
Nr.	Beprobung	[%]	[%]	[%]	[μg/g]	[μg/g]	[µg/g]	[%]	[µg/g]	[µg/g]	[µg/g]		[µg/g]	1979-5-19	[µg/g]	[μg/g]	[µg/g]		1 1
MO 363	1990	3.04	6.54	3.69	156	134	582	4.19	51	25	235	18	29	139	280	33	1.19	0.33	
HS 96	1990	2.95	6.03	4.16	131	134	450	3.59	49	25	197	16	29	125	296	25	0.87	0.38	70
ME 209	1990	4.37	6.38	3.62	140	119	323	3.91	50	26	245	17	36		262	26	0.99	0.41	85
HW 113	1989	3.28	6.99	5.49	145	112	805	4.31	48	23	221	16	31	122	260	24	1.14	0.41	75
HW 115	1990	2.25	6.81	3.73	148	127	458	4.34	58	21	196	19	26	145	261	42	1.16	0.24	61
HW 116	1989	2.85	7.71	4.92	148	141	690	5.18	50	20	276	19	34	137	231	38	1.39	0.31	88
HW 124	1989	2.73	7.18	5.29	166	122	695	4.69	47	19	227	17	34	134	266	28	1.23	0.31	68
HW 137	1989	3.31	7.43	3.96	195	131	645	5.06	55	18	254	21	34	151	214	33	1.13	0.31	80
HW 158	1990	2.39	6.07	4.30	120	109	415	3.68	48	25	187	15	28	121	287	27	0.67	0.32	61
HW 162	1990	2.62	6.56	3.20	134	133	362	3.97	41	20	235	14	27	113	197	30	1.20	0.35	91
HW 187	1990	2.68	7.63	3.02	170	187	515	5.40	57	26	329	19	28	141	197	42	1.18	0.28	85
HW 187	1991	2.66	5.90	4.14	133	121	581	3.77	49	9	193	13	20	109	193	35	0.45	0.23	41
JB 2	1989	3.39	6.16	5.08	133	103	1097	3.86	49	21	185	15	34	114	261	22	0.60	0.43	62
JB 12	1989	2.82	6.03	5.31	123	98	866	3.61	46	19	171	14	29	108	260	20	0.59	0.40	55
JB 17	1989	2.86	6.39	5.14	127	104	571	3.87	48	22	197	15	30	118	247	24	0.66	0.46	65
JB 25	1989	3.23	6.41	4.69	140	107	638	4.09	51	25	195	15	39	125	271	25	0.52	0.44	70
JB 38	1989	3.22	6.43	4.69	121	97	772	3.73	41	21	187	15	29	110	229	22	0.62	0.41	65
JB 42	1989	2.65	7.43	5.44	156	125	882	4.92	53	17	224	18	40	132	271	32	0.50	0.28	69
JB 54	1989	3.05	6.77	4.75	127	102	576	4.19	50	21	217	18	39	130	241	23	0.68	0.43	61
JB 61	1989	2.90	6.87	4.46	134	104	632	4.12	54	22	216	17	35	123	234	25	0.67	0.47	68
JB 75	1989	3.07	6.12	5.21	126	95	706	3.59	43	22	178	15	29	109	263	23	0.53	0.39	62
JB 79	1989	2.62	6.40	4.50	135	104	578	3.90		25	225	16	36	115	214	27	0.78	0.49	75
JB 87	1989	3.24	6.72	4.40	179	109	783	4.14	49	23	267	15	32	129	219	35	1.28	0.50	95
JB 103	1989	1.96	5.14	4.14	96	72	566	2.64	35	14	129	. 11	21	77	191	17	0.54	0.26	41
LLS 10	1990	2.71	7.58	3.55	185	160	786	6.05	61	29	403	19	37	147	231	42	1.50	0.34	134
LLS 15	1990	3.27	6.88	3.19	138	140	1372	5.08	68	39	438	17	36	137	256	36	1.94	0.79	142
LLS 50	1990	3.12	6.70	3.16	125	139	886	4.27	58	27	331	16	22	124	222	27	0.90	0.86	110

Tab. 9.5 (Forts.) Elementgehalte in der <20µm-Fraktion der Wattsedimente (n.a.: nicht analysiert, da zuwenig Probenmaterial vorhanden war).

Proben-	Jahr der	org. C	Al	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Cd 1	Hg	Pb
Nr.	Beprobung	[%]	[%]	[%]	[µg/g]	[µg/g]	[μg/g]	[%]	[µg/g]		[µg/g]		[µg/g]	4	[µg/g]	[µg/g]	[µg/g]	[μg/g]	[µg/g]
ES 20	1990	3.21	7.56	2.75	125	135	527	4.67	59	35	477	17	24	128	206	32	2.64	0.38	136
KS 17	1990	1.99	6.42	5.07	118	141	501	4.15	43	19	260		22	109	244	29	1.81	0.32	65
NW 76	1990	2.93	7.20	4.69	171	169	671	5.67	58	25	368	20	28	152	246	27	1.70	0.52	82
E9	1991	1.04	3.99	3.23	49	51	744	1.65	22	9	101	5	13	44	133	14	0.25	0.34	26
E 28	1991	1.31	4.90	3.86	100	96	796	4.16	36	16	265	11	36	84	178	25	0.65	0.44	54
T 255	1989	3.35	7.10	3.32	180	123	1186	6.27	53	25	328	19	46	146	206	31	1.30	0.59	66
T 262	1989	3.77	7.07	3.39	173	136	939	5.64	52	27	350	17	40	137	183	25	2.52	0.72	74
T 280	1989	3.24	6.42	3.85	139	95	3890	4.57	50	24	320	15	46	107	226	24	1.19	0.99	85
T 346	1991	1.56	4.55	3.55	94	79	1056	3.21	34	9	175	8	25	68	152	19	0.34	0.25	45
T 350	1991	3.42	6.67	2.10	142	158	569	5.43	47	22	403	17	34	126	138	25	0.78	0.48	65
B 93	1989	3.14	6.96	4.30	165	115	1415	5.13	52	27	298	19	34	138	219	25	1.25	0.72	68
B 166	1991	2.09	n.a.	2.27	117	100	1178	4.48	51	9	202	9	31	71	124	20	0.27	0.20	33
B 204	1991	1.93	4.63	2.62	65	47	288	1.83	31	9	98	6	10	46	103	17	0.40	0.22	22
B 218	1991	1.26	3.82	2,96	59	40	491	1.73	26	7	71	6	14	44	119	13	0.20	0.17	17
B 238	1989	3.01	6.68	4.59	146	107	764	4.52	50	19	197	16	34	129	225	23	0.84	0.49	52
B 249	1989	4.43	7.46	2.92	185	120	1363	5.75	56	24	329	17	55	144	193	28	2.51	0.64	106
B 403	1989	2,65	6.39	5.30	139	106	1570	5.05	45	19	262	15	40	112	239	23	1.65	0.55	56
B 411	1991	1.92	4.58	3.60	74	69	460	2.56	40	14	153	8	18	65	158	18	0.47	0.44	36
B 414	1989	2.22	6.67	4.64	164	119	1671	6.01	52	18	328	16	39	120	214	27	1.11	0.42	61
B 543	1991	5.12	6.52	3.75	152	119	1042	4.51	50	23	192	18	36	142	239	26	0.53	0.43	61
NS 319	1991	3.21	5.80	1.77	120	85	370	3.10	35	14	168	12	17	99	115	22	0.97	0.29	50
NS 320	1991	0.90	4.98	2.67	62	45	287	1.70	21	4	47	6	7	54	103	17	0.06	0.06	11
NS 335	1991	1.51	5.18	2.88	68	49	445	2.15	24	9	94	8	15	61	125	15	0.28	0.23	29
NH 294	1987	2.24	4.38	1.98	7 7	68	1052	2.43	30	12	108	- 8	22	67	118	16	0.59	0.20	31
PW 233	1991	3.68	6.47	4.55	159	131	775	4.50	50	24	215	17	32	142	265	29	0.62	0.56	68
PW 297	1991	2.31	5.63	1.49	112	77	464	2.85	33	10	105	13	21	102	111	19	0.40	0.16	26

Tab. 9.5 (Forts.) Elementgehalte in der <20µm-Fraktion der Wattsedimente (n.a.: nicht analysiert, da zuwenig Probenmaterial vorhanden war).

Proben-	Jahr der	org. C	Al	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn	Ga	As	Rb	Sr	Y	Cd	Hg	Pb
Nr.	Beprobung	[%]	[%]	[%]	$[\mu g/g]$	$[\mu g/g]$	[μg/g]	[%]	[µg/g]	[µg/g]	[µg/g]	[µg/g]		1	[µg/g]			[μg/g]	
PW 306	1991	2.42	5.44	2.57	92	69	567	2.68	32	13	117	11	20	91	138	18	0.50	0.20	
PW 340	1991	n.a.	6.23	1.16	154	120	961	4.51	42	15	228	15	36	115	117	31	0.56	0.31	48
LN 266	1991	1.85	5.28	2.36	90	66	410	2.43	29	11	117	9	20	69	116	19	0.54	0.23	34
DA 252	1987	2.25	4.67	1.56	75	68	1232	2.57	29	11	99	9	23	63	96	14	0.46	0.18	1 1
AM 208	1987	7.37	6.12	2.72	216	106	639	5.29	52	27	303	17	126	126	235	26		0.65	•
AM 208	1991	n.a.	6.28	1.44	142	104	323	3.50	48	29	249	15	56	108	158	19	1.63	0.47	69
AM 212	1991	2.78	5.48	4.41	108	76	457	2.91	34	14	144	13	22	95	216	35	0.55	0.29	37
AM 215	1987	4.01	6.93	3.37	145	108	449	4.00	45	25	206	17	28	124	171	21	0.93	0.52	58
AM 215	1991	4.00	5.80	2.60	104	86	294	2.73	38	17	145	12	20	89	136	17	0.74	0.29	40
AM 223	1987	4.21	6.32	3.67	146	104	553	4.07	48	25	267	16	32	122	184	23	1.61	0.63	58
AM 223	1991	4.39	6.12	2.90	104	75	384	2.78	44	17	160	12	20	86	148	20	0.95	0.31	38
AM 229	1987	3.00	4.30	1.88	97	64	356	2.58	28	13	132	9	54	71	130	15	0.67	0.25	35
AM 235	1991	n.a.	n.a.	3.59	140	107	751	3.52	62	28	192	15	29	112	233	22	0.80	0.41	46
FO 94	1991	5.33	6.35	2.28	147	102	578	3.61	47	19	199	14	42	110	156	22	1.10	0.33	49
FO 102	1991	n.a.	7.28	1.52	214	118	792	4.75	55	26	259	19	111	148	184	33	0.78	0.44	71
FO 132	1991	3.49	5.53	2.22	130	77	530	3.08	33	16	161	12	30	91	135	25	0.92	0.27	51
FO 167	1991	3.73	5.71	1.62	117	83	429	2.93	35	16	166	12	35	95	117	26	1.08	0.24	41
FO 180	1991	2.19	5.08	1.39	87	56	573	2.17	26	8	101	9	18	62	87	18	0.33	0.14	33
FO 198	1991	n.a.	6.42	1.39	149	111	426	3.67	48	25	208	16	73	116	144	25	1.70	0.31	41
SY 1	1991	n.a.	n.a.	0.87	188	108	745	3.84	59	39	273	18	51	128	137	31	1.97	0.42	72
SY 2	1990	5.16	n.a.	1.51	165	116	367	4.23	55	37	308	15	80	115	136	24	2.36	0.46	82
SY 5	1990	3.57	n.a.	2.30	166	123	474	4.60	50	20	210	1	33	110	152	33	0.56	0.24	55
SY 7	1991	n.a.	n.a.	1.79	153	100	232	3.11	50	35	263	1	122	107	198	27	2.15	0.37	55
SY 15	1991	3.83	6.10	2.60	105	90	334	3.02	42	19	147	13	24	97	145	20	0.68	0.31	38
SY 21	1990	2.88	n.a.	2.69	138	101	1023	4.21	47	21	166	1 2019 (3.45)	36	118	171	24	0.49	0.30	60
SY 41	1987	3.30	5.70	2.17	130	89	1136	3.91	44	21	177	14	54	97	163	21	0.90	0.34	56
SY 48	1991	7.08	5.74	2.07	141	92	303	3.02	46	27	205	12	82	92	152	24	0.99	0.34	56
SY 50	1987	4.49	4.44	2.47	91	78	298	2.57	36	19	154	10	51	65	153	16	0.74	0.28	47
SY 161	1991	3.77	6.69	3.69	173	121	2436	5.21	52	18	209	19	54	139	260	31	0.69	0.33	57

Tab. 9.6.1 Elementgehalte in den verschiedenen Korngrößenfraktionen ausgewählter Wattsedimente.

HS 96/90 Schlickwatt

Eleme	ent	<20μm	20-63μm	63-200μm	Gesamt	<63µm
Corg.	[%]	2.95	0.34	0.22	1.84	2.88
Al	[%]	6.03	2.84	2.15	4.22	n.a.
Ca	[%]	4.16	3.49	1.47	4.14	4.83
V	[µg/g]	131	25	10.4	69.0	81
Cr	[μg/g]	134	20	13.6	71.0	70
Mn	$[\mu g/g]$	450	162	60.2	298.0	336
Fe	[%]	3.59	0.70	0.33	1.99	2.30
Ni	[μg/g]	49	11	5.3	23.0	28
Cu	$[\mu g/g]$	25	4	1.8	12.0	13
Zn	[µg/g]	197	35	19.6	104.0	121
Ga	[μg/g]	16	3	1.7	8.0	9
As	[μg/g]	29	4	3.6	14.0	16
Rb	[µg/g]	125	23	19.3	66.0	71
Sr	$[\mu g/g]$	296	149	79.6	199.0	214
Y	[µg/g]	25	9	3.0	21.0	17
Cd	[µg/g]	0.87	0.16	0.12	0.43	0.62
Hg	[µg/g]	0.38	0.06	0.04	0.18	0.28
Pb	$[\mu g/g]$	70	10	6.0	33.0	39

HW 158/90 Mischwatt

Eleme	nt	<20µm	20-63μm	63-200µm	Gesamt	<63µm
Corg.	[%]	2.39	n.a.	n.a.	0.65	0.38
Al	[%]	6.07	n.a.	n.a.	n.a.	n.a.
Ca	[%]	4.30	2.91	1.14	2.14	4.77
V	[µg/g]	120	26	8.5	23.8	71
Cr	[µg/g]	109	43	10.0	23.7	78
Mn	[μg/g]	415	192	53.5	117.0	306
Fe	[%]	3.68	0.65	0.27	0.76	2.25
Ni	[µg/g]	48	8	4.5	9.0	31
Cu	[μg/g]	25		1.0	3.5	12
Zn	[µg/g]	187	21	9.5	34.6	107
Ga	[µg/g]	15	2	1.5	2.4	9
As	[μg/g]	28	5	2.5	5.2	15
Rb	$[\mu g/g]$	121	23	19.5	20.8	63
Sr	[µg/g]	287	129	63.0	86.6	189
Y	[µg/g]	27	20	3.5	6.4	16
Cd	[μg/g]	0.67	0.07	0.03	0.13	0.46
Hg	[μg/g]	0.32	0.02	0.01	0.06	0.18
Pb	[μg/g]	61	7	4.0	11.4	36

Tab. 9.6.1 (Forts.) Elementgehalte in den verschiedenen Korngrößenfraktionen ausgewählter Wattsedimente.

HW 162/90 Sandwatt

Eleme	nt	<20μm	20-63μm	63-200µm	Gesamt	<63µm
Corg.	[%]	2.62	0.27	0.08	0.19	1.27
Al	[%]	6.56	2.96	2.00	2.17	n.a.
Ca	[%]	3.20	2.23	0.97	1.23	5.18
V	$[\mu g/g]$	134	41	9.3	11.0	68
Cr	[μg/g]	133	75	9.1	14.5	71
Mn	[µg/g]	362	336	51.1	65.5	240
Fe	[%]	3.97	0.81	0.28	0.41	1.96
Ni	[µg/g]	41	6	3.6	10.0	23
Cu	$[\mu g/g]$	20		0.9	1.5	11
Zn	[μg/g]	235	20	10.6	19.5	109
Ga	[μg/g]	14	1	2.0	2.0	7
As	[μg/g]	27	5	2.5	4.0	10
Rb	[µg/g]	113	17	21.2	17.0	50
Sr	[μg/g]	197	112	55.2	59.5	122
Y	[μg/g]	30	42	3.7	4.5	24
Cd	[μg/g]	1.20	0.08	0.05	0.10	0.65
Hg	[μg/g]	0.35	0.02	0.02	0.08	0.16
Pb	[μg/g]	91	7	5.2	7.0	48

JB 2/89 Schlickwatt

Eleme	nt	<20µm	20-63μm	63-200μm	Gesamt
Corg.	[%]	3.39	0.43	0.08	2.21
Al	[%]	6.16	2.77	2.01	4.68
Ca	[%]	5.36	2.63	0.59	4.06
V	[µg/g]	132	24	4	87
Cr	[μg/g]	117	51	6	77
Mn	[µg/g]	1210	280	60	790
Fe	[%]	4.06	0.67	0.18	2.56
Ni	[µg/g]	37	6	2	24
Cu	[µg/g]	21	-	2	14
Zn	$[\mu g/g]$	190	20	10	120
Ga	$[\mu g/g]$	15	5	4	13
As	$[\mu g/g]$	26	-3	3	17
Rb	$[\mu g/g]$	126	49	40	90
Sr	[µg/g]	237	126	63	192
Y	[μg/g]	22	14	3	20
Cd	[μg/g]	0.60	n.a.	n.a.	n.a.
Hg	$[\mu g/g]$	0.43	n.a.	n.a.	n.a.
Pb	[µg/g]	62	10	6	45

Tab. 9.6.1 (Forts.) Elementgehalte in den verschiedenen Korngrößenfraktionen ausgewählter Wattsedimente.

T 262/89 Sandwatt

Eleme	ent	<20µm	20-63μm	63-200μm	Gesamt	<63µm	
Corg.	[%]	3.77	n.a.	0.07	0.16	3.34	
Al	[%]	7.07	2.86	1.71	1.85	n.a.	
Ca	[%]	3.39	2.16	1.00	0.64	2.51	
V	[µg/g]	173	112	8.6	10.5	109	
Cr	[µg/g]	136	251	6.9	9.0	94	
Mn	[μg/g]	939	730	53.4	65.5	565	* ; ;
Fe	[%]	5.64	1.58	0.27	0.33	3.16	
Ni	[µg/g]	52	12	3.0	8.0	33	Y.
Cu	[µg/g]	27			3.0	10	Na sá
Zn	[µg/g]	350	31	10.0	17.0	213	
Ga	[μg/g]	17		0.9	1.0	9	
As	[µg/g]	40	6	2.6	2.5	22	N. W.
Rb	[µg/g]	137	18	17.1	12.0	88	Wille
Sr	[µg/g]	183	131	41.4	38.0	139	
Y	[µg/g]	25	123	4.4	4.0	26	
Cd	[µg/g]	2.52	0.10	0.03	0.05	1.19	
Hg	[µg/g]	0.72	0.03	0.01	0.08	0.47	
Pb	[μg/g]	74	15	4.1	4.5	51	

Tab. 9.6.2 Elementgehalte in der <20 μ m- und <63 μ m-Fraktion sowie in den unfraktionierten Proben ausgewählter Wattsedimente.

BO 390/90 Sandwatt

JU 198/90 Sandwatt

Element	<20µm	<63µm	Gesamt	Element	<20µm	<63µm	Gesamt
Corg. [%]	3.18	3.19	0.12	Corg. [%]	5.11	n.a.	0.14
Al [%]	6.09	n.a.	n.a.	AI [%]	7.51	n.a.	n.a.
Ca [%]	4.70	5.35	0.71	Ca [%]	2.43	2.55	0.24
V [μg/g]	120	97	6.3	V [μg/g] 156	161	3.9
Cr [µg/g]	114	88	7.0	Cr [µg/g		132	5.0
Mn [μg/g]	596	467	44.2	Mn [µg/g	1	624	23.4
Fe [%]	3.84	2.63	0.20	Fe [%]	4.07	3.69	0.15
Ni [μg/g]	48	42	2.8	Ni [μg/g] 51	55	1.8
Cu [µg/g]	27	14	1.3	Cu [µg/g] 32	25	0.6
Zn $[\mu g/g]$	209	135	8.3	Zn [µg/g] 304	275	6.3
Ga [μg/g]	16	10	0.9	Ga [μg/g		10	0.5
As [μg/g]	27	14	1.7	As [µg/g		29	1.3
Rb [μg/g]	130	83	8.5	Rb [µg/g] 127	122	4.4
Sr $[\mu g/g]$	329	236	36.9	Sr [μg/g		157	13.4
Y [μg/g]	28	22	2.5	Y [μg/g	10.18	36	1.9
Cd [µg/g]	0.86	0.59	0.03	Cd [µg/g	√ 6 %. (.)	1.46	0.09
Hg $[\mu g/g]$	0.44	0.36	0.02	Hg [µg/g	1. 1 L 2 L 2 L 3	0.53	0.01
Pb $[\mu g/g]$	71	45	3.5	Pb [μg/g	1	103	2.9

HS 96/90 Schlickwatt

HW 158/90 Mischwatt

Elen	ient	<20µm	<63µm	Gesamt	Elemen	nt	<20µm	<63µm	Gesamt
Corg		2.95	2.88	1.84	Corg.	[%]	2.39	0.38	0.65
Al	[%]	6.03	n.a.	n.a.	AI	[%]	6.07	n.a.	n.a.
Ca	[%]	4.16	4.83	4.14	Ca	[%]	4.30	4.77	2.14
V	[µg/g]	131	81	69.0	V [μg/g]	120	71	23.8
Cr	[μg/g]	134	70	71.0	Cr [µg/g]	109	78	23.7
Mn	[μ g /g]	450	336	298.0	Mn [μg/g]	415	306	117.0
Fe	[%]	3.59	2.30	1.99	Fe	[%]	3.68	2.25	0.76
Ni	[µg/g]	49	28	23.0	Ni [μg/g]	48	31	9.0
Cu	[μg/g]	25	13	12.0	Cu [μg/g]	25	12	3.5
Zn	[μg/g]	197	121	104.0	Zn [μg/g]	187	107	34.6
Ga	[μg/g]	16	9	8.0	10.00 m	μg/g]	15	9	2.4
As	[μg/g]	29	16	14.0	1.00	μg/g]	28	15	5.2
Rb	[μ g / g]	125	71	66.0		μg/g]	121	63	20.8
Sr	[μg/g]	296	214	199.0		μg/g]	287	189	86.6
Y	[μg/g]	25	17	21.0	Entre 1	μg/g]	27	16	6.4
Cd	[μg/g]	0.87	0.62	0.43	. 1 87 See 7a	μg/g]	0.67	0.46	0.13
Hg	[μg/g]	0.38	0.28			μg/g]	0.32	0.18	0.06
Pb	[µg/g]	70			2.5.9.7.1	μg/g]	61	36	11,4

Tab. 9.6.2 (Forts.) Elementgehalte in der $<20\mu m$ - und $<63\mu m$ -Fraktion sowie in den unfraktionierten Proben ausgewählter Wattsedimente.

HW	102/90) Sandwa	III	-		
Elem	ient	<20μm	<63µm	Gesamt		
Corg.	[%]	2.62	1.27	0.19		
Al	[%]	6.56	n.a.	n.a.		
Ca	[%]	3.20	5.18	1.23		
V	[μg/g]	134	68	11.0		
Cr	[µg/g]	133	71	14.5		
Mn	[µg/g]	362	240	65.5		
Fe	[%]	3.97	1.96	0.41		
Ni	$[\mu g/g]$	41	23	10.0		
Cu	$[\mu g/g]$	20	11	1.5		
Zn	[µg/g]	235	109	19.5		
Ga	[µg/g]	14	7	2.0		
As	[µg/g]	27	10	4.0		
Rb	[µg/g]	113	50	17.0		
Sr	[µg/g]	197	122	59.5		
Y	[µg/g]	30	24	4.5		
Cd	[μg/g]	1.20	0.65	0.10		
Hg	[µg/g]	0.35	0.16	0.08		
Pb	$[\mu g/g]$	91	48	7.0		

ES 20/90 Sandwatt

Elem	ent	<20μm	<63µm	Gesamt
Corg.	[%]	3.21	n.a.	0.11
Al	[%]	7.56	n.a.	n.a.
Ca	[%]	2.75	3.24	0.78
V	[μg/g]	125	106	6.2
Cr	$[\mu g/g]$	135	114	6.7
Mn	$[\mu g/g]$	527	401	48.2
Fe	[%]	4.67	3.31	0.27
Ni	$[\mu g/g]$	59	36	3.8
Cu	$[\mu g/g]$	35	20	1.1
Zn	[µg/g]	477	334	20.5
Ga	[µg/g]	17	12	0.7
As	[µg/g]	24	15	2.1
Rb	[µg/g]	128	85	5.3
Sr	$[\mu g/g]$	206	149	31.1
Y	$[\mu g/g]$	32	22	2.7
Cd	$[\mu g/g]$	2.64	2.67	0.12
Hg	[µg/g]	0.38	0.37	0.02
Pb	$[\mu g/g]$	136	83	4.9

Elem	ent	<20µm	<63μm	Gesamt
Corg.	[%]	1.99	1.74	0.11
Al	[%]	6.42	n.a.	n.a.
Ca	[%]	5.07	3.13	1.16
V	[μg/g]	118	69	9.5
Cr	[µg/g]	141	74	10.2
Mn	[μg/g]	501	331	70.7
Fe	[%]	4.15	1.99	0.36
Ni	[µg/g]	43	28	4.1
Cu	[µg/g]	19	9	0.9
Zn	[µg/g]	260	120	15.2
Ga	[μg/g]	14	7	1.2
As	[μg/g]	22	10	3.4
Rb	$[\mu g/g]$	109	51	11.7
Sr	[µg/g]	244	137	50.7
Y	[μg/g]	29	33	5.4
Cd	[µg/g]	1.81	0.68	0.07
Hg	[μg/g]	0.32	0.22	0.02
Pb	[μg/g]	65	35	3.9

NW 76/90 Sandwatt

Elem	ent	<20µm	<63µm	Gesamt
Corg.	[%]	2.93	1.48	0.08
Al	[%]	7.20	n.a.	n.a.
Ca	[%]	4.69	3.42	0.66
V	[µg/g]	171	105	4.2
Cr	[μg/g]	169	103	5.8
Mn	[µg/g]	671	467	31.6
Fe	[%]	5.67	3.16	0.19
Ni	[μg/g]	58	34	2.5
Cu	[μg/g]	25	11	0.4
Zn	[µg/g]	368	198	9.0
Ga	[µg/g]	20	10	0.6
As	[µg/g]	28	16	2.0
Rb	[µg/g]	152	77	5.6
Sr	[μg/g]	246	160	30.3
Y	[µg/g]	27	32	2.3
Cd	[µg/g]	1.70	0.84	0.03
Hg	[µg/g]	0.52	0.37	0.01
Pb	[µg/g]	82	43	2.3

Tab. 9.6.3 Elementgehalte in der <20 μ m- und <63 μ m-Fraktion sowie in den unfraktionierten Proben ausgewählter Wattsedimente.

T 255/89 Sandwatt

T 262/89 Sandwatt

Elen	ient	<20µm	<63µm	Gesamt	Elem	ent	<20µm	<63μm	Gesamt
Corg	. [%]	3.35	1.62	0.11	Corg.	[%]	3.77	3.34	0.16
Al	[%]	7.10	n.a.	n.a.	Al	[%]	7.07	n.a.	n.a.
Ca	[%]	3.32	2.94	0.59	Ca	[%]	3.39	2.51	0.64
V	[µg/g]	180	78	5.8	V	[µg/g]	173	109	10.5
Cr	[μg/g]	123	74	7.1	Cr	[μg/g]	136	94	9.0
Mn	[μg/g]	1186	563	44.6	Mn	[µg/g]	939	565	65.5
Fe	[%]	6.27	2.76	0.24	Fe	[%]	5.64	3.16	0.33
Ni	[µg/g]	53	25	2.8	Ni	[µg/g]	52	33	8.0
Cu	[µg/g]	25	13	0.6	Cu	[µg/g]	27	10	3.0
Zn	[µg/g]	328	154	10.3	Zn	[μg/g]	350	213	17.0
Ga	[µg/g]	19	9	0.7	Ga	[µg/g]	17	9	1.0
As	[µg/g]	46	16	2.1	As	$[\mu g/g]$	40	22	2.5
Rb	[µg/g]	146	60	6.0	Rb	$[\mu g/g]$	137	88	12.0
Sr	[µg/g]	206	126	27.4	Sr	[µg/g]	183	139	38.0
Y	[µg/g]	31	17	2.6	Y	[μg/g]	25	26	4.0
Cd	[µg/g]	1.30	0.57	0.03	Cd	[µg/g]	2.52	1.19	0.05
Hg	[μg/g]	0.59	0.29	0.01	Hg	$[\mu g/g]$	0.72	0.47	0.08
Pb	[µg/g]	66	41	2.9	Pb	[µg/g]	74	51	4.5

T 280/89 Sandwatt

Elem	ent	<20μm	<63μm	Gesamt
Corg.	[%]	3.24	2.63	0.30
Al	[%]	6.42	n.a.	n.a.
Ca	[%]	3.85	3.18	1,11
V	[µg/g]	139	88	11.9
Cr	[µg/g]	95	75	13.3
Mn	[μg/g]	3890	1938	261.0
Fe	[%]	4.57	2.73	0.49
Ni	$[\mu g/g]$	50	41	5.2
Cu	[µg/g]	24	16	1.9
Zn	[μg/g]	320	181	27.5
Ga	[µg/g]	15	10	1.2
As	[µg/g]	46	25	3.9
Rb	[µg/g]	107	77	9.7
Sr	[µg/g]	226	168	44.8
Y	[µg/g]	24	19	4.1
Cd	[µg/g]	1.19	0.60	0.08
Hg	[µg/g]	0.99	0.57	0.07
Pb	[μg/g]	85	47	7.0

Tab. 9.7.1 Vergleich der Aufschluß- und Analysenmethoden für Wattsedimente(<20μm-Fraktion): Bund/Länder-Meßprogramms (BLMP: 1984 bis 1989) und Schadstoffkartierung (GKSS: 1989 bis 1991)

Labor	Aufschlußmethode	Abk.			Aı	nalysen	methoden			
					AAS Graphit- rohrofen	Flamme	ICP-AES	INAA	RFA	TRFA
NLWA Hildesheim	mit Königswasser im geschlossenen System m. Rückflußkühler u. Adsorptionsgefäß	K	As	Hg			Cr Fe Ni Cu Zn Cd Pb			
BfG Koblenz	entfällt	1						Cr Fe Zn As Cd Hg	Pb	
ARGE Elbe Hamburg	Druckaufschluß n. Tölg m. HNO ₃ /HF; 3,5 Std. bei 170 °C	D(A)	As	Hg	Cr Ni Cu Cd Pb	Fe Zn				
LW SH Kiel	Druckaufschluß n. Tölg m. HNO ₃ /HF; 3,5 Std. bei 170°C	D	As	Hg	Cr Ni Cu Cd Pb	Fe Zn				
GKSS Geesthacht	Mikrowellenaufschluß m. konz. HNO ₃ 15 Min. bei 510 W u. 30 Min. bei 390 W	М		Hg	Cd			Al		Ca V Cr Mn Fe Ni Cu Zn Ga As Rb Sr Y Pb

Tab. 9.7.2 Vergleich der Analysenergebnisse des Bund/Länder-Meßprogramms (BLMP: 1984-1989) und der Schadstoffkartierung (GKSS: 1989-1991) von Wattsedimenten (<20μm-Faktion).

Bor	kum			*****		В	LMF						GKS	S
				1	0/86	<u> </u>				10/8	8		BO390/	90
Aufs	schluß	K			K	ŀ	(K	K	141	K	M	
Cr	μg/g		80		7	7	67		72		93	74	1 14.3	114
Ni	μg/g	ŀ	37		34	1	29		30		34	28	The Cart	48
Cu	μg/g		27		24	1	18		24		37	26	¥ 5/-	27
Zn	μg/g		220		210)	180		210		360	240	in the state of th	209
As	μg/g		n.a.		n.a		n.a.		n.a.		n.a.	n.a.		27
Pb	μg/g		110		110)	93		73		130	92		71
Cd	μg/g	l	2.6		2.5	5	2.0	(r ()	2.7		3.5	2.7		0.90
Hg	μg/g	v	0.4		0.5	;	0.4		0.5		0.8	0.3		0.40

Ley	bucht		W.			V.	В	LM	P		AVAY.				T. A	(AAV)	GKSS	
			9/	84		9/:	85		9,	86		9/88		10/88		J	U289/90	7 1 A
Aufs	chluß	K	K	K	I	K	I	K	K	K	I	I	K	K	K		M.	9147
Cr	μg/g	69	80	76	110	74	127	72	67	75	126	120	56	69	67	11	1 1 1 1 1	112
Ni	μg/g	31	34	33	27	20	63	29	30	31	34	49	26	31	29	1000		42
Cu	μg/g	24	25	25	20	27	51	24	24	24	19	30	20	25	20	5. A4		24
Zn	μg/g	180	210	200	220	180	222	190	190	210	230	228	180	210	190			196
As	μg/g	n.a.	n.a.	n.a.	21	n.a.	20	n.a.	n.a.	n.a.	25	28	n.a.	n.a.	n.a.			31
Pb	μg/g	100	120	110	74	66	91	87	88	100	67	73	78	88	74	4. 4.7		63
Cd	μg/g	1.7	2.0	2.0	0.6	1.3	1.0	2.4	3.1	3.4	1.0	0.4	2.1	3.7	1.4			0.80
Hg	µg/g	0.3	0.4	0.3	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.4	0.5	0.4	11/2	ina Makay Maran	0.40

No	rdern	ey		50.4 50.4		******		В	LM	P			1.32					GKSS	
				9/84					8/86				74 34 - 340	9/89			NO30/90	NO47/90	NO61/90
Auf	schluß	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	M	M	M
Cr	μg/g	97	72	71	88	86	74	75	73	77	84	85	73	76	78	75	89	89	83
Ni	μg/g	42	31	33	37	47	33	30	30	27	36	36	33	31	34	38	43	38	39
Cu	μg/g	39	27	34	30	37	23	24	27	24	33	29	23	24	27	24	19	18	15
Zn	μg/g	250	190	230	220	280	180	200	220	200	270	220	190	240	220	210	163	177	144
As	μg/g	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	25	18	15
Pb	μg/g	140	100	110	140	190	85	88	110	80	150	83	77	93	91	110	55	47	44
Cd	μg/g	2.8	2.2	2.5	1.3	2.7	2.3	2.2	2.3	2.0	2.2	1,4	1.0	<2.7	1.1	<1.0	0.51	0.95	0.66
Hg	μg/g	0.5	0.3	0.4	0.4	0.5	0.4	0.4	0.4	0.5	0.6	0.4	0.4	0.5	0.5	0.4	0.41	0.37	0.32

Spie	ekeroog				BLMP				GKSS
			9/86			10/88			SP14/90
Aufs	chluß	K	K	K	K	K	K	K	M
Cr	μg/g	76	72	69	76	77	74	68	96
Ni	μg/g	37	32	32	33	36	31	31	47
Cu	μg/g	28	24	19	24	26	25	22	24
Zn	μg/g	330	200	190	230	260	200	230	199
As	μg/g	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	29
Pb	μg/g	140	91	100	130	100	84	93	78
Cd	μg/g	3.9	2.2	1.9	2.0	2.2	2.0	1.7	0.89
Hg	μg/g	0.6	0.4	0.5	0.4	0.6	0.4	0.4	0.31

Tab. 9.7.2 (Forts.)

Wang	gerooge	*******	BLMP				GKSS		Tañ.
***************************************			9/84		8/85	WA351/90	WA351/91		
Aufsch	luß	K	K	K	K	M		M	
Cr	μg/g	79	78	69	66	152	2		153
Ni	μg/g	35	37	34	20	50)		57
Cu	μg/g	27	31	24	24	48			31
Zn	μg/g	210	230	200	190	308	3		263
As	μg/g	n.a.	n.a.	n.a.	n.a.	99)		76
Pb	μg/g	110	120	140	75	76,7	A S		89
Cd	μg/g	2.1	2.6	1.0	0.7	1.60	5		1.02
Hg	μg/g	0.3	0.3	0.2	0.5	0.30)		0.38

Eli	sabeth	grod	en		M	BLMI	>						G	KSS	.		
			9/84			8/85		9/86			SP36/90	MO36	3/90	WA	351/90	WA3	51/91
Auf	schluß	K	K	K	K	K	K	K	K	K	M	M	I		M	N	⁄1
Cr	μg/g	73	75	78	77	68	72	75	65	67	120		134		152		153
Ni	μg/g	33	32	34	33	19	27	30	29	31	48		51		50		57
Cu	μg/g	28	26	28	24	27	22	24	22	27	23		25	M.	48		31
Zn	μg/g	200	200	210	210	170	180	210	180	200	227		235		308		263
As	μg/g	n.a.	29		29	selv.	99		76								
Pb	μg/g	100	110	120	120	61	79	100	81	89	83		72	5. 4	108		89
Cd	μg/g	2.0	3.1	2.1	1.6	1.8	3.0	2.6	2.1	2.6	1.34	197	1.19		1.66		1.02
Hg	μg/g	0.2	0.3	0.3	0.3	0.5	0.3	0.4	0.4	0.4	0.38		0.33		0.30		0.38

Jad	lebuse	n		• ****		*******			B	LM	P			eran, er en i. 1 Tanan ansa				GK	SS
				9/84			9/85			9/86				er de la	10/88			JB38	3/89
Aufs	schluß	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	N	Í
Cr	μg/g	87	75	76	67	72	70	96	71	73	72	67	80	62	59	70	74		97
Ni	μg/g	41	34	35	31	36	20	44	34	29	30	26	33	26	25	34	38		41
Cu	μg/g	54	28	27	33	25	26	25	23	23	23	25	26	22	20	23	24		21
Zn	μg/g	260	190	200	180	200	160	330	190	190	180	190	200	170	160	190	210		187
As	μg/g	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		29
Pb	μg/g	130	110	110	99	110	62	150	87	81	86	72	92	75	65	80	89		65
Cd	μg/g	1.6	1.5	1.9	0.9	1.4	1.7	3.6	2.3	1.8	0.0	1.9	<1.0	2.0	<1.0	1.2	<1.0		0.60
Hg	μg/g	0.3	0.3	0.3	0.2	0.3	0.5	0.6	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.4		0.40

Ho	her W	eg			*******]	BLN	1P	*****						GKSS	
		9	/84			9/85	9)/86				10/88			HW158/89	HW162/89	HW137/89
Auf	schluß	K	K	K	K	K	K	K	K	K	K	K	K	K	M	М	M
Cr	μg/g	75	79	70	66	64	70	77	63	65	69	29	71	68	109	133	131
Ni	μg/g	34	37	33	41	22	32	35	28	29	37	36	35	34	48	41	55
Cu	μg/g	29	34	27	22	25	22	24	19	21	23	24	22	22	25	20	18
Zn	μg/g	190	210	190	170	160	170	190	160	170	210	210	200	200	187	235	254
As	μg/g	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	28	27	34
Pb	μg/g	110	120	100	94	62	85	89	66	79	72	87	88	77	61	91	80
Cd	μg/g	1.9	2.4	2.1	2.1	0.8	2.5	2.5	2.0	1.9	1.7	1.2	1.5	1.6	0.67	1.20	1.10
Hg	μg/g	0.2	0.3	0.3	0.2	0.6	0.3	0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.30	0.32	0.40

Tab. 9.7.2 (Forts.)

Tett	ens		a dada alfanta aya	BLMP			tieneseteseseses	GK	SS
			9/86			10/88		LLS15/90	LLS50/90
Aufsc	:hluß	K	K	K	K	K	K	М	M
Cr	μg/g	69	60	63	60	47	56	140	139
Ni	μg/g	37	35	35	36	31	36	68	58
Cu	μg/g	31	29	32	28	25	25	39	27
Zn	μg/g	320	300	320	310	260	290	438	331
As	μg/g	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	36	22
Pb	μg/g	110	110	110	100	83	110	142	110
Cd	μg/g	3.5	3.1	3.5	1.9	1.7	2.3	1.90	0.90
Hg	μg/g	0.5	0.5	0.6	0.6	0.6	0.6	0.80	0.90

Dor	um		Service de	1.000		В	LM	P				diversity	- 1- 1-		GI	KSS
			9/84		We Try Tee	9/85		9/86				10/88)		ES20/90	KS17/90
Aufsc	hluß	K	K	K	K	K	K	K	K	K	K	K	K	K	М	M
Cr	μg/g	78	78	76	63	63	72	72	68	53	87	69	64	56	135	141
Ni	$\mu g/g$	39	37	39	36	23	36	37	32	29	39	37	35	34	59	43
Cu	μg/g	37	31	30	22	29	27	26	24	17	30	27	25	21	35	19
Zn	μg/g	280	280	270	280	230	270	270	240	250	360	270	250	270	477	260
As	μg/g	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	24	22
Pb	μg/g	130	140	130	140	75	100	110	100	130	150	99	92	120	136	65
Cd	μg/g	2.5	2.3	2.0	2.1	1.4	3.4	2.9	2.7	2.6	2.0	2.1	1.8	1.6	2.60	1.81
Hg	μg/g	0.4	0.4	0.5	0.4	0.6	0.4	0.3	0.4	0.2	0.6	0.5	0.5	0.5	0.40	0.32

Nei	uwerk				rania i			I	BLM	P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			147			GF	KSS
			Sah			NI			NII	An explored		Duh			Cux			yan (A. J. Sier Lister
	per distribution	9/86	9/88	12/89	9/86	9/88	12/89	9/86	9/88	12/89	9/86	9/88	12/89	9/86	9/88	12/89	T350/91	NW76/90
Auf	schluß	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	D(A)	M	M
Cr	μg/g	90	44	140	96	68	158	98	69	124	47	46	127	96	83	118	158	169
Ni	μg/g	24	17	42	23	26	48	26	28	38	13	18	35	27	32	36	47	58
Cu	$\mu g/g$	23	13	29	25	21	32	28	20	28	13	15	30	34	48	33	22	25
Zn	μg/g	231	118	241	225	247	280	231	204	244	119	146	234	340	423	277	403	368
As	μg/g	7	8	8	5	13	8	8	14	12	3	9	10	10	11	8	34	28
Pb	μg/g	57	24	48	70	35	57	59	33	41	32	26	44	68	63	47	65	82
Cd	μg/g	1.6	0.5	0.6	1.5	0.9	0.7	1.7	0.9	0.8	0.8	0.5	0.5	1.8	1.3	0.7	0.78	1.70
Hg	μg/g	0.9	0.6	1.1	0.9	0.9	1.3	1.1	1,4	1.2	0.5	0.7	1.0	2.1	2.3	1.5	0.48	0.52

Trisc	hendamm		BLMP		\mathbf{G}	KSS
		10/86	9/88	9/89	T262/90	T255/90
Aufsch	nluß	D(A)	D(A)	D(A)	M	M
Cr	μg/g	74	84	74	136	123
Ni	μg/g	20	31	21	52	53
Cu	μg/g	17	25	16	27	25
Zn	μg/g	154	254	186	350	328
As	μg/g	6	18	5	40	46
Pb	μg/g	57	42	98	74	66
Cd	μg/g	0.9	0.6	0.4	2.50	1.30
Hg	μg/g	0.9	1.4	0.9	0.59	0.70

Tab. 9.7.2 (Forts.)

Bü	sumer	·Wa	tt					В	LM	P		A.V. A.V.				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G	KSS	
		1/84	2/84	3/84	4/84	5/84	6/84	7/84	8/84	7/85	6/8	6	8/86	8/87	8/88	B403/90	B161/91	B166/91	B204/91
Auf	schluß	D	D	D	D	D	D	D	D	D	D	D	D	D	D	М	M	M	M
Cr	μg/g	99	102	96	82	98	132	125	86	113	101	83	112	81	87	106	121	100	47
Ni	μg/g	21	31	28	24	35	47	74	36	28	34	34	35	41	33	45	52	51	31
Cu	μg/g	18	22	20	18	27	26	55	28	24	21	23	21	29	22	19	18	9	9
Zn	μg/g	188	212	212	177	181	202	289	188	195	196	179	177	168	209	262	209	202	98
As	μg/g	12	20	7	11	8	7	9	27	26	10	11	7	7	22	40	54	31	10
Pb	μg/g	41	54	38	46	45	56	56	33	44	48	39	42	38	53	56	57	33	22
Cd	μg/g	1.5	1.4	1,4	2.2	1.2	1.4	2.2	1.3	0.9	0.8	0.6	0.5	0.6	0.6	1.70	0.69	0.27	0.40
Hg	μg/g	0.7	0,9	1.0	0.7	2.0	1.9	n.a.	0.4	0.9	1.0	0.6	0.6	0.6	0.5	0.60	0.33	0.20	0.22

Hevers	trom			BLN	ЛP	allenger og fillen som le Sit i Missons		GKSS
		8/84	8/85		6/86	9/86	8/87	PW233/91
Aufschlu	B	D	D	D	D	D	D	M
Cr	μg/g	83	123	128	107	104	85	131
Ni	μg/g	23	39	32	35	38	46	50
Cu	μg/g	18	30	30	21	25	20	24
Zn	μg/g	172	195	196	184	171	149	215
As	μg/g	36	25	33	12	12	13	32
Pb	μg/g	59	50	47	51	47	30	68
Cd	μg/g	1.1	0.7	0.8	0.6	0.6	0.5	0.62
Hg	μg/g	0.4	0.7	0.7	0.9	0.8	0.4	0.56

Lan	geness			BLMP			GKS	S
		8/84	9/85	6/86	8/86	8/87	FO132/91	FO198/91
Aufsc	hluß	D	D	D	D	D	М	M
Cr	μg/g	171	124	108	104	104	77	111
Ni	μg/g	40	37	31	33	52	33	48
Cu	μg/g	13	18	16	17	14	16	25
Zn	μg/g	272	143	150	140	114	161	208
As	μg/g	18	26	14	19	7	30	73
Pb	μg/g	23	36	38	36	17	51	41
Cd	μg/g	0.3	0.5	0.6	0.4	0.2	0.92	1.70
Hg	μg/g	0.4	0.3	0.3	0.5	0.1	0.27	0.31

Ola	ınd						I	3LM	P						GI	ζSS
		2/84	3/84	4/84	5/84	6/84	7/84	8/84	10/84	9/85		6/86		8/87	FO132/91	FO94/91
Auf	schluß	D	D	D	D	D	D	D	D	D	D	D	D	D	М	M
Cr	μg/g	106	109	97	122	113	113	78	86	123	102	104	121	97	77	102
Ni	μg/g	25	25	20	27	23	24	22	26	58	34	31	36	47	33	47
Cu	μg/g	19	16	14	15	13	13	14	16	17	17	15	17	19	16	19
Zn	μg/g	177	177	162	186	165	168	144	152	154	142	132	152	142	161	199
As	μg/g	26	25	23	24	24	24	30	27	28	13	12	12	18	30	42
Pb	μg/g	47	46	37	46	44	43	37	36	41	41	38	43	32	51	49
Cd	μg/g	0.6	0.6	0.7	0.6	0.4	0.4	0.8	0.9	0.5	0.4	0.3	0.3	0.4	0.92	1.10
Hg	μg/g	0.4	0.4	0.4	0.5	0.5	0.6	0.4	0.4	0.4	0.6	0.3	0.7	0.4	0.27	0.33

140

Tab. 9.8 Chlorkohlenwasserstoff-Konzentration (µg/kgTM) für die Wattenmeersedimente (unfraktioniert)

Proben-	Jahr der	нсв	QCB	α-НСН	γ-НСН	ocs	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180	Corg.
Nr.	Beprobung	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[%]
BO 390	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.08	0.12	0.00	0.13
JU 122	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.13	0.00	0.00	4 - 1 - 1 - 1 - 1	0.19
JU 135	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.09	0.10		0.18
JU 142	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
JU 198	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
JU 254	1990	0.05	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.06	0.00	0.10	0.00	0.19	0.26	0.07	0.23
JU 265	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
JU 289	1990	1.10	0.41	0.14	0.12	0.09	0.76	0.67	0.00	0.00	0.00	1.01	0.00	2.15	2.38	0.71	2.80
JU 317	1990	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.06	0.00	0.07	0.00	0.16	0.23	0.06	0.21
NO 30	1990	0.19	0.16	0.00	0.00	0.00	1 44 44 6	0.17	0.00	0.45	0.20	0.22	0.55	0.70	0.58	0.19	1.23
NO 47	1990	0.06	0.00		0.00	0.00	0.05	0.00	0.00	0.10	0.06	0.08	0.13	0.16	0.14	0.05	0.42
NO 61	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	, 0.06	0.07	0.08	0.09	0.00	0.44
NO 78	1990	0.08	0.07	0.00	0.00	0.00	1, 11, 11, 11, 11, 11, 11, 11, 11, 11,	0.00	0.00	0.17	0.08	0.11	0.24	0.29	0.27	0.09	0.08
BA3	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
BA9	1990	0.00	0.00	0.00	0.00	0.00	and a second of	0.00	0.00	0.00	0.00	0.09	0.12	0.13	0.13	0.00	0.45
BA 13	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.06	0.00	0.25
BA 23	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
BA 264	1990	0.00	0.05	0.00	0.00	0.00		0.00	0.00	0.10	0.00	0.00	0.10	0.14	0.11	0.00	0.23
LA 246	1990	0.07	0.05	0.00	0.00	0.00	0.07	0.08	0.00	0.15	0.00	0.14	0.00	0.32	0.38	0.06	0.38
LA 259	1990	0.64	0.25	0.00	0.00	0.00		0.30	0.00	0.58	0.22	0.49	0.00	1.51	1.57	0.64	0.57
LA 264	1990	0.00	0.00	0.00	0.00	0.00		74 7 1 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
LA 278	1990	0.00	0.00	0.00	0.00	0.00	0.00	2.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SP 2	1990	0.08	0.00	0.00	0.00	0.00		0.00	0.00	0.12	0.00	0.06	0.07	0.15	0.09	0.00	0.28
SP 14	1990	0.20	0.14	0.00	0.05	0.08	0.15	0.16	0.00	0.36	0.00	0.34	0.00	0.68	0.72	0.13	1.00
SP 36	1990	0.08	0.07	0.00	0.00	0.00	0.08	0.12	0.00	0.24	0.07	0.20	0.20	0.32	0.21	0.09	0.14
MO 363	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
HS 96	1990	0.39	0.27	0.00	0.00	0.00			0.00	0.00	0.40	0.80	0.00	1.25	1.07	0.39	1.78
ME 209	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13

- 141

Tab. 9.8 (Forts.) Chlorkohlenwasserstoff-Konzentration (μg/kgTM) für die Wattenmeersedimente (unfraktioniert)

Proben-	Jahr der	нсв	QCB	α-НСН	ү-НСН	OCS	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180	Corg.
Nr.	Beprobung	[µg/kg]	 And the second 		[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[%]							
HW 113	1989	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.10	0.00	0.09	0.10		0.17	0.06	0.33
HW 115	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.23
HW 116	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	N/ A / A	0.05	0.00	0.15
HW 124	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14	0.00	0.00	0.17
HW 137	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	15	0.00	0.14
HW 162	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1991	0.06	0.00	0.22
HW 187	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	A		0.00	0.07
JB 2	1989	0.50	0.37	0.18	0.07	0.05	0.74	0.58	0.41	1.20	0.43	0.92	1.62	1.82	2.77	0.71	2.45
JB 5	1989	0.92	0.68	0.32	0.12	0.13	1.55	1.27	0.38	2.60	0.84	1.70	2.46	No. 1	3.33	1.00	2.72
JB 12	1989	2.46	0.11	0.05	0.00	0.00	0.23	0.22	0.07	0.41	0.14	0.33	0.73	0.52	0.71	0.25	0.81
JB 17	1989	0.09	0.06	0.00	0.00	0.00	0.08	0.11	0.49	0.28	0.10	0.20	0.24	0.00	0.26	0.11	0.42
JB 25	1989	0.87	0.63	0.29	0.00	0.07	0.97	0.54	0.30	1.53	0.61	1.32	1.48	2.79	3.17	0.61	3.68
JB 28	1989	0.23	0.15	0.32	0.00	0.00	0.26	0.08	0.68	0.42	0.32	0.44	0.47	0.32	0.73	0.21	1.06
JB 38	1989	1.78	1.23	0.64	0.00	0.15	2.50	1.38	0.84	3.48	1.50	3.49	3.73	7.57	8.50	1.81	3.26
JB 42	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.12
JB 44	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	V	0.06	0.00	f
JB 47	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.12	0.14	0.07	0.14
JB 48	1989	0.36	0.23	0.13	0.00	0.00	0.43	0.21	0.15	0.86	0.32	0.65	0.70	1.42	1.47	0.33	2.34
JB 54	1989	0.10	0.06	0.00	0.00	0.00	0.51	0.22	0.07	0.11	0.10	0.32	0.24	0.70	0.50	0.20	0.76
JB 56	1989	0.49	0.30	0.14	0.00	0.00	0.53	0.42	0.19	0.85	0.35	0.77	0.96	1.81	2.13	0.46	1.89
JB 58	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.07	0.00	0.17
JB 61	1989	0.11	0.08	0.05	0.00	0.00	0.18	0.09	0.00	0.39	0.14	0.30	0.28	0.59	0.51	0.17	0.59
JB 66	1989	0.32	0.20	0.10	0.00	0.00	0.36	0.33	0.13	0.68	0.26	0.57	0.66	1.29	1.49	0.28	1.84
JB 75	1989	0.20	0.14	0.06	0.00	0.00	0.24	0.25	0.07	0.51	0.18	0.38	0.70	Programme Artist	1.12	0.22	1.26
JB 79	1989	0.14	0.08	0.06	0.00	0.00	0.25	0.22	0.08	0.42	0.17	0.39	0.36	Karana a sa sa sa ka	0.95	0.24	0.64
JB 87	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.07	0.08	0.15	0.18	0.00	0.20
JB 92	1989	0.06	0.00	0.00	0.00	0.00	0.07	0.00	0.30	0.12	0.00	0.09	0.13	0.00	0.12	0.07	0.35
JB 103	1989	0.28	0.22	0.11	0.00	0.00	0.51	0.45	0.15	0.79	0.29	0.58	1.04	1.28	1.31	0.34	1.21
JB 110	1990	0.34	0.22	0.10	0.00	0.00	0.38	0.44	0.12	0.82	0.26	0.57	0.86			0.30	

. 142

Tab. 9.8 (Forts.) Chlorkohlenwasserstoff-Konzentration (µg/kgTM) für die Wattenmeersedimente (unfraktioniert)

Proben-	Jahr der	НСВ	QCB	α-НСН	у-НСН	ocs	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCR153	PCB180	Corg.
Nr.	Beprobung	[µg/kg]		[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]			[µg/kg]	[µg/kg]		[µg/kg]	[µg/kg]	[%]
LLS 10	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
LLS 15	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00		0.00	0.00	0.00	1 8
LLS 50	1990	0.00	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.06	0.00	0.12	0.00	0.21	0.23	0.09	0.26
ES 20	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.13	0.00	
KS 17	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16
NW 76	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	
E 9	1991	1.46	0.23	0.00	0.05	0.11	1.14	0.24	0.00	0.13	1.15	0.22	0.19	0.37	0.34	0.14	0.60
E 28	1991	0.06	0.00	0.00	0.00	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.10
T 255	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
T 262	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12
T 280	1989	0.09	0.00	0.00	0.00	0.00	0.24	0.07	0.06	0.00	0.00	0.07	0.05	0.16	0.20	0.05	0.18
T 346	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
T 350	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65
B 93	1989	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.09	0.00	0.15
B 166	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
B 204	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.17
B 218	1991	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.05	0.00	0.16
B 238	1991	0.05	0.00	0.00	0.00	0.00	0.15	0.00	0.08	0.00	0.00	0.15	0.27	0.28	0.34	0.09	0.17
B 249	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
B 403	1991	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.11	0.00	0.15
B 411	1991	0.10	0.00	0.00	0.00	0.00	0.23	0.05	0.00	0.05	0.00	0.06	0.00	0.12	0.08	0.05	0.18
B 414	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
B 543	1991	0.30	0.00	0.45	0.22	0.00	0.00	0.17	1.19	0.00	0.00	0.00	0.00	0.09	0.15	0.45	2.70
NS 319	1991	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17 77 77	0.07
NS 320	1991	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.56
NS 335	1991	0.48	0.20	0.06	0.00	0.05	1.03	0.35	0.00	0.53	0.18	0.47	0.60	1.25	0.98	0.43	1.40

143

Tab. 9.8 (Forts.) Chlorkohlenwasserstoff-Konzentration (µg/kgTM) für die Wattenmeersedimente (unfraktioniert)

Proben-	Jahr der	HCB	QCB	α-НСН	ү-НСН	ocs	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180	Corg.
Nr.	Beprobung	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	(µg/kg)	[µg/kg]	(µg/kg)	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[%]
PW 233	1991	0.20	0.00	0.08	0.13	0.00	0.00	0.25	0.42	0.00	0.00	0.00		***************************************	0.07	0.10	0.76
PW 297	1991	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	(A) A) (A)	0.06	1	0.26
PW 306	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32
PW 340	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
LN 266	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17
AM 208	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15
AM 212	1991	0.06	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.06	0.00	0.00	0.07	0.11	0.10	0.00	0.33
AM 215	1991	0.11	0.06	0.00	0.00	0.00	0.17	0.00	0.00	0.11	0.00	0.09	0.14	0.00	0.15	0.05	1.04
AM 223	1991	0.11	0.00	0.00	0.00	0.00	0.15	0.10	0.00	0.12	0.00	0.10	0.14	0.00	0.20	0.07	0.72
AM 235	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05
FO 94	1991	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.21
FO 132	1991	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	(4) 1.0 (1.4 kg)	177 (474)	0.00	0.00	0.13
FO 167	1991	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	4,000,000	100 100 100 100 100 100 100 100 100 100	0.00	1.3 1.7 1	0.11
FO 180	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	47 75 - 35	5 1 NATE 100	0.00	r	
FO 198	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	0.00	3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (1001 (0.000,0) 	0.00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SY 1	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	
SY 2	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	98.97.61	0.05	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SY 5	1990	0.00	0.00	0.00	0.00	0.00		0.00	0.00	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.00	0.00	0.00	W1 23 15 1	0.05	0.00	
SY 7	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	1.0 (3.7%)	0.00	0.00	#
SY 15	1991	0.31	0.17	0.05	0.00	0.00	0.49	0.34	0.00		0.17	0.29	0.41	0.73	0.56	0.18	
SY 21	1990	0.23	0.10	0.08	0.00	0.00	7 (1.1)	0.25	0.00		0.00	0.26	0.23	0.62	0.79	0.25	1.32
SY 48	1991	0.00	0.00	0.00		0.00			0.00	187 17 18	0.00	0.00	A41 1 1941	[10] 0.0 0.1	30 000		1
SY 161	1991	0.05	0.00	0.20	0.22	0.00	0.00	0.29	0.24	0.00	0.00	0.00	0.00	0.07	0.06	0.18	0.70

144

Tab. 9.9 Chlorkohlenwasserstoff-Konzentration bezogen auf den Kohlenstoffgehalt TOC (µg/kgCorg) für die Wattenmeersedimente

Proben-	Jahr der	НСВ	QCB	α-НСН		OCS	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180	Corg.
Nr.		[µg/kg]	[µg/kg]	[µg/kg]	1 74.3 4.34	[%]											
BO 390	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	38.46	61.54	92.31	0.00	0.1
JU 122	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	89.47	0.00	0.00	68.42	0.00	0.00	0.00	0.19
JU 135	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.78	27.78	50.00	55.56	0.00	0.1
JU 142	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
JU 198	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
JU 254	1990	21.74	0.00	0.00	0.00	0.00	26.09	0.00	0.00	26.09	0.00	43.48	0.00	82.61	113.04	30.43	0.23
JU 265	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
JU 289	1990	39.29	14.64	5.00	4.29	3.21	27.14	23.93	0.00	0.00	0.00	36.07	0.00	76.79	85.00	25.36	2.80
JU 317	1990	0.00	0.00	0.00	0.00	0.00	23.81	0.00	0.00	28.57	0.00	33.33	0.00	76.19	109.52	28.57	0.21
NO 30	1990	15.40	12.97	0.00	0.00	0.00	27.56	13.78	0.00	36.47	16.21	17.83	44.58	56.74	47.01	15.40	1.23
NO 47	1990	14.03	0.00	0.00	0.00	0.00	11.69	0.00	0.00	23.86	14.32	19.09	31.02	38.17	33.40	11.93	0.42
NO 61	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.64	0.00	13.41	15.64	17.88	20.11	0.00	0.44
NO 78	1990	95.44	83.51	0.00	0.00	0.00	155.09	0.00	0.00	202.80	95.44	131,23	286.31	345.96	322.10		0.08
BA3	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
BA 9	1990	0.00	0.00	0.00	0.00	0.00	11.03	0.00	0.00	0.00	0.00	19.85	26.46	28.67	28.67	0.00	0.45
BA 13	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.41	20.41	24.49	0.00	0.25
BA 23	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
BA 264	1990	0.00	21.34	0.00	0.00	0.00	0.00	0.00	0.00	42.68	0.00	0.00	42.68	59.76	46.95	0.00	0.23
LA 246	1990	18.42	13.16	0.00	0.00	0.00	18.42	21.05	0.00	39.47	0.00	36.84	0.00	84.21	100.00	15.79	0.38
LA 259	1990	112.28	43.86	0.00	0.00	0.00	66.67	52.63	0.00	101.75	38.60	85.96	0.00	264.91	275.44	112.28	0.57
LA 264	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
LA 278	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.45
SP 2	1990	28.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	42.86	0.00	21.43	25.00	53.57	32.14	0.00	0.28
SP 14	1990	20.00	14.00	0.00	5.00	8.00	15.00	16.00	0.00	36.00	0.00	34.00	0.00	68.00	72.00	13.00	1.00
SP 36	1990	57.14	50.00	0.00	0.00	0.00	57.14	85.71	0.00	171.43	50.00	142.86	142.86	228.57	150.00	64.29	0.14
MO 363	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	40.27 (300.29)		0.00	1.14 . 4 7 3 1	0.08
HS 96	1990	21.91	15.17	0.00	0.00	0.00	0.00	25.84	0.00	0.00	22.47	44.94	0.00	70.22	60.11	21.91	1.78
ME 209	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1943 - 65 3 BBM	0.00	15 N St. 6 Base	0.13

- 145

Tab. 9.9 (Forts.) Chlorkohlenwasserstoff-Konzentration bezogen auf den Kohlenstoffgehalt TOC (µg/kgCorg) für die Wattenmeersedimente

Proben-	Jahr der	HCB	QCB	α-НСН	у-НСН	OCS	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180	Corg.
Nr.	Beprobung	[µg/kg]		[µg/kg]	1		[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[%]						
HW 113	1989	0.00	0.00	0.00	0.00	0.00	18.24	0.00	0.00		2	27.36	30.40	60.79	51.67	18.24	0.33
HW 115	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5 1 2 1 1 1 1	9	0.23
HW 116	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.15
HW 124	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	34.48	0.00	0.00	0.17
HW 137	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	215.83	0.00	0.00	0.14
HW 162	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	32.57	27.92	0.00	0.22
HW 187	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
JB 2	1989	20.41	15.10	7.35	2.86	2.04	30.20	23.67	16.73	48.98	17.55	37.55	66.12	74.29	113.06	28.98	2.45
JB 5	1989	33.82	25.00	11.76	4.41	4.78	56.99	46.69	13.97	95.59	30.88	62.50	90.44	122.06	4 1 M A A A A A A A A A A A A A A A A A A	36.76	2.72
JB 12	1989	304.46	13.61	6.19	0.00	0.00	28.47	27.23	8.66	50.74	17.33	40.84	90.35	64.36	87.87	30.94	0.81
JB 17	1989	21.48	14.32	0.00	0.00	0.00	19.09	26.25	116.95	66.83	23.87	47.73	57.28	0.00	62.05	26.25	0.42
JB 25	1989	23.64	17.12	7.88	0.00	1.90	26.36	14.67	8.15	41.58	16.58	35.87	40.22	75.82	86.14	16.58	3.68
JB 28	1989	21.70	14.15	30.19	0.00	0.00	24.53	7.55	64.15	39.62	30.19	41.51	44.34	30.19	68.87	19.81	1.06
JB 38	1989	54.60	37.73	19.63	0.00	4.60	76.69	42.33	25.77	106.75	46.01	107.06	114.42	232.21	260.74	55.52	3.26
JB 42	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	43.48	0.00	0.12
JB 44	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	51.28	51.28	0.00	0.12
JB 47	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	48.95	83.92	97.90	48.95	0.14
JB 48	1989	15.38	9.83	5.56	0.00	0.00	18.38	8.97	6.41	36.75	13.68	27.78	29.91	60.68	62.82	14.10	2.34
JB 54	1989	13.25	7.95	0.00	0.00	0.00	67.55	29.14	9.27	14.57	13.25	42.38	31.79	92.72	66.23	26.49	0.76
JB 56	1989	25.93	15.87	7.41	0.00	0.00	28.04	22.22	10.05	44.97	18.52	40.74	50.79	95.77	112.70	24.34	1.89
JB 58	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1 /	0.00	0.00	41.92	41.92	0.00	0.17
JB 61	1989	18.68	13.58	8.49	0.00	0.00	30.56	15.28	0.00	66.21	23.77	50.93	47.54	100.17	86.59	28.86	0.59
JB 66	1989	17.39	10.87	5.43	0.00	0.00	19.57	17.93	7.07	36.96	100.00	30.98	35.87	70.11	80.98	15.22	1.84
JB 75	1989	15.87	11.11	4.76	0.00	0.00	19.05	19.84	5.56		14.29	30.16	55.56	42.06	88.89	17.46	1.26
JB 79	1989	21.81	12.46	9.35	0.00	0.00	38.94	34.27	12.46		26.48	60.75	56.07	119.94	147.98	37.38	0.64
JB 87	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	35.53	40.61	76.14	91.37	0.00	0.20
JB 92	1989	17.19	0.00	0.00	0.00	0.00	20.06	0.00	85.96	34.38	0.00	25.79	37.25	0.00	34.38	20.06	0.35
JB 103	1989	23.14	18.18	9.09	0.00	0.00	42.15	37.19	12.40		23.97	47.93	85.95	105.79	108.26	28.10	1.21
JB 110	1990	29.57	19.13	8.70	0.00	0.00	33.04	38.26	10.43	71.30	22.61	49.57	74.78	98.26	113.91	26.09	1.15

- 146

Tab. 9.9 (Forts.) Chlorkohlenwasserstoff-Konzentration bezogen auf den Kohlenstoffgehalt TOC (μg/kgCorg) für die Wattenmeersedimente

Proben-	Jahr der	нсв	QCB	α-НСН	у-НСН	ocs	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCR153	PCR180	Corg.
Nr.	Beprobung	[µg/kg]		[µg/kg]		[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[%]						
LLS 10	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					0.09
LLS 15	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00	0.53
LLS 50	1990	0.00	0.00	0.00	0.00	0.00	46.15	0.00	0.00	23.08	0.00	46.15	0.00		88.46	34.62	0.26
ES 20	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	120 173 76	108.33	0.00	0.12
KS 17	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		4.00	0.00	0.16
NW 76	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.50	0.00	0.00	0.00	0.00	0.00	0.00	0.08
E 9	1991	241.73	38.08	0.00	8.28	18.21	188.75	39.74	0.00	21.52	190.41	36.43	31.46	61.26	56.29	23.18	0.60
E 28	1991	58.16	0.00	0.00	0.00	0.00	126.01	0.00	0.00	0.00	0.00	0.00	0.00	48.46	0.00	0.00	0.10
T 255	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
T 262	1989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12
T 280	1989	48.91	0.00	0.00	0.00	0.00	130.43	38.04	32.61	0.00	0.00	38.04	27.17	86.96	108.70	27.17	0.18
T 346	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
T 350	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65
B 93	1989	0.00	0.00	0.00	0.00	0.00	46.36	0.00	0.00	0.00	0.00	0.00	0.00	39.74	59.60	0.00	0.15
B 166	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
B 204	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	36.25	0.00	0.00	0.17
B 218	1991	0.00	0.00	0.00	0.00	0.00	38.24	0.00	0.00	0.00	0.00	0.00	0.00	50.99	31.87	0.00	0.16
B 238	1991	30.30	0.00	0.00	0.00	0.00	90.91	0.00	48.48	0.00	0.00	90.91	163.64	169.70	206.06	54.55	0.17
B 249	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
B 403	1991	0.00	0.00	0.00	0.00	0.00	64.94	0.00	0.00	0.00	0.00	0.00	0.00	58.44	71.43	0.00	0.15
B 411	1991	55.39	0.00	0.00	0.00	0.00	127.39	27.69	0.00	27.69	0.00	33.23	0.00	66.47	44.31	27.69	0.18
B 414	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.09
B 543	1991	11.11	0.00	16.67	8.15	0.00	0.00	6.30	44.07	0.00	0.00	0.00	0.00		5.56	16.67	2.70
NS 319	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		217 7 87 7	0.00	0.07
NS 320	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.56
NS 335	1991	34.36	14.32	4.29	0.00	3.58	73.73	25.05	0.00	37.94	12.88	33.64	42.95	89,47	70.15	30.78	1,40

147

Tab. 9.9 (Forts.) Chlorkohlenwasserstoff-Konzentration bezogen auf den Kohlenstoffgehalt TOC (µg/kgCorg) für die Wattenmeersedimente

Proben-	Jahr der	HCB	QCB	α-НСН	у-НСН	ocs	DDD	DDE	DDT	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCR180	Corg.
Nr.	Beprobung	[µg/kg]		[µg/kg]	[µg/kg]				[µg/kg]			[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[µg/kg]	[%]
PW 233	1991	26.32	0.00	10.53	17.10	0.00	0.00	32.90	55.26	0.00	0.00	0.00	***************************************		9.21	13.16	0.76
PW 297	1991	0.00	0.00	0.00	0.00	0.00	31.28	0.00	0.00	0.00	0.00	0.00		B	23.46	0.00	0.26
PW 306	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32
PW 340	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
LN 266	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17
AM 208	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15
AM 212	1991	18.49	0.00	0.00	0.00	0.00	30.81	0.00	0.00	18.49	0.00	0.00	21.57	33.89	30.81	0.00	0.33
AM 215	1991	10.62	5.79	0.00	0.00	0.00	16.41	0.00	0.00	10.62	0.00	8.69	13.51	0.00	14.48	4.83	1.04
AM 223	1991	15.32	0.00	0.00	0.00	0.00	20.89	13.93	0.00		0.00	13.93	19.50	0.00	27.86	9.75	0.72
AM 235	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4 6 7 6 6 7 6 7	0.00	0.00	0.00	0.00	0.00	0.00	0.05
FO 94	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.0	0.00	0.00		0.00	0.00	0.00	0.21
FO 132	1991	0.00	9 () ()	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.13
FO 167	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00	0.00	0.00	0.11
FO 180	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.08
FO 198	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00	0.03
SY 1	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.05
SY 2	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	45.45	0.00	0.11
SY 5	1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		83.33	83.33	0.00	0.06
SY 7	1991	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00	0.00	0.16
SY 15	1991	14.34	7.86	2.31	0.00	0.00	22.66	15.72	0.00		7.86	13.41	18.96	33.76	25.90	8.32	2.16
SY 21	1990	17.42	7.58	6.06	0.00	0.00	33.33	18.94	0.00		0.00	19.70	1.4 1.4 4	46.97	59.85	18.94	1.32
SY 48	1991	0.00	0.00		0.00	0.00	0.00	4 4 1 4 4 1 4 1	3.3.3.3.3.3.3			0.00	N. 173 XX			1	1
SY 161	1991	7.14	0.00	28.57	31.43	0.00	0.00	41.43	34.29	0.00	0.00	0.00	0.00	10.00	8.57	25,71	0.70

-951 -